73

PROGRAMMING
FOR THE TRS-80

(MODEL 1)
David L. Heiserman

Intermediate Programming for the
TRS-80°(Model 1)

David L. Heiserman has been a freelance
writer since 1968. He is the author of more
than 100 magazine articles and 15 technical
and scientific books. He studied applied math-
ematics at Ohio State University and is now
Associate Professor of Electronics at the Ohio
Institute of Technology. A member of Mensa,
he is especially interested in the history and
philosophy of science.

Intermediate Programming for the
TRS-80°(Model 1)

By

David L. Heiserman

Associate Professor ot Electronics
Ohio Institute of Technology

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1982 by David L. Heiserman

FIRST EDITION
FIRST PRINTING-1982

Al rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability

is assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-21809-7
Library of Congress Catalog Card Number: 81-51556

Edited by: Jack Davis
lustrated by: William Basham

Printed in the United States of America.

Preface

I don’t think there is such an animal as a perfectly contented
computer programmer and operator. Such people are chronically
afflicted with a desire to acquire more equipment or find ways to
use existing schemes more effectively.

The matter of acquiring more equipment—more memory, more
peripherals, and so on—can be an expensive route to doing more
and better things with a computer system. In fact, it is often a
prohibitively expensive route.

A much less expensive alternative is to learn how to use a system’s
existing features more effectively. It is quite surprising in many
instances to discover that your own system has more computing
power than you imagined. Tucked away in those ROMs and
available utility tapes are a lot of features just crying to be used.
Unfortunately, those bits and pieces of computing power are often
overlooked, by both the user and the manufacturer who wrote the
instruction manual,

This book helps you uncover some of those “hidden” features
of the TRS-80 personal computer system and then shows you how
to exploit them to your programming advantage. If you already
have a standard Model I TRS-80 with 16K of RAM and Level II
capability, your only additional expense will be tied up in two
Radio Shack cassette tapes: T-BUG and Editor/Assembler. A line
printer can be very helpful in the later stages of this exploration
of the TRS-80, but it isn’t absolutely essential.

The book is designed to stimulate your own sense of program-
ming creativity. It shows how something can be done in a general
way, illustrating the point with specific examples. It is then up to
you to use the information to work out programs of your own
invention.

Dav L. HElSERMAN

Contents

CHAPTER 1

You, Your TRS-80, anp Twxs Boox 9

Which System Do You NeedP—How This Book Is Organized—How
to Get the Most From This Book

CHAPTER 2

Toe Voeo ENVIRONMENT 15
Video Data—Video Addressing—Video Control Codes

CHAPTER 3

ToeE KEYBOARD ENVIRONMENT 44

The Standard INPUT Statement—The Standard INKEY$ Statement
~Sensing Key Depression With PEEK (14463)—~Working With the
Keyboard Matrix

CHAPTER 4

Tae User’s MEMORY ENVIRONMENT o4

Organization of the User's Memory Space~The I/0Q Buffer—“Dis-
assembling” a BASIC Program-Protecting Memory Space—Some
Special Memory Operations

CHAPTER 5

LinkinGg BASIC anp MacaNE Lancuace Wrrn USR . . . 81

Getting Set Up for a USR Operation—A Preliminary Note About
Machine-Language Programming—POKEing in Machine-Language
Programs From BASIC—Some Programming Examples—Passing a
Value to the Machine-Language Subroutine—Passing Values From
Machine Language to BASIC—Passing Values Back and Forth—
Saving BASIC/Machine-Language Programs on Cassette Tape

CHAPTER &

MantpuLaTING BASIC-Loapep, USR-Linkep Programs . . 103

Specifying Entry Points for USR-Linked Programs—Deleting the
Machine-Language Loader—Building Machine-Language Programs
From the Bottom Up

CHAPTER 7
HexapeciMAL ProcrRaMMing Wrre T-BUG 121
The T-BUG Environment—T-BUG Operations--Summary of T-BUG
Operations
CHAPTER 8
ExpLoriNG THE TRS-80 Wit T-BUG 14l

The Hexadecimal Video Environment—The Hexadecimal Keyboard
Environment — Some Special Video/Keyboard Functions — T-BUG
and The Memory Environment

CHAPTER 9

InTrODUCING THE TRS-80 EDITOR/ASSEMBLER 163

A Few Preliminary Notes—Bringing up EDTASM~Line Numbers,
ORG, and END-Deleting and Writing Program Text—Assembling
the Source Program—Working With the Object-Code Version—Other
EDTASM Commands and Variations

CHAPTER 10

Rearn AssemBLy Power Writg Psevpo-Ops 181

Simple EQU Pseudo-Ops—EQU Operations With Math Operations
—Redefining a Label With DEFL—Leaving Memory Space With
DEFS—Defining Memory Contents With DEFB and DEFW-—Build-
ing Message Tables With DEFM

CHAPTER 11

Purtine It A TogETHER197

Building a General-Purpose FILL Routine—Applying and Refining
FILL.2—Building a General-Purpose MOVE Routine

APPENDIX A

Numser SystEM Base ConveEmsions 214

Hexadecimal-to-Decimal Conversions — Decimal-to-Hexadecimal
Conversions—Decimal Address to 2-Byte Decimal Format—2-Byte
Decimal to Conventional Decimal—Binary-to-Decimal Conversion—
Binary-to-Hexadecimal Conversion—Hexadecimal-to-Binary Conver-
sion—Decimal-to-Binary Conversion

APPENDIX B
Z-80 InstrucrioN SET: OBJECT AND SoURcE CopEs 222
APPENDIX C
TRS-80 ASCII Cuaracrer SET: DECIMAL AND
Hexapecrmar Copes23
APPENDIX D

TRS-80 Graruics CHARACTER SET: DECIMAL AND
HexapecimarL Copes2933

Inpex23

CHAPTER 1

You, Your TRS-80, and This Book

Do you remember the first day you fired up your brand-new
TRS-80? You probably do. For most of us that was an exciting and
rewarding experience.

One of the nice things about owning your own home computer
is that the feeling of having first-time adventures doesn’t have to
wear off; there is always something new to learn and try. Learning
something new, trying it, and making it work can be just as much
fun as turning on the computer the first time.

Oh sure, there are times when things don’t go right and you feel
like throwing the whole system across the room. Things can go
wrong, they don’t always work out as expected, and the frustration
level can grow to disheartening proportions. But that happens to
everyone who works with computers and computer programming,
no matter how much or how little experience they have and no mat-
ter how sophisticated or modest the computer system is.

Home computer programming, however, still retains all the po-
tential for being a continuously rewarding experience. All you have
to do is learn what you need to know as you go along, applying
the newfound knowledge until it becomes second nature to you.
Then you are ready to learn something else. There is really no end
to it. And it’s great fun.

The key to maintaining an ongoing love affair with your computer
is thus a matter of learning to do new things or to do old things
in a new and better way. Doing the same old things in the same old
fashion can become boring or tedious, no matter how well they
work out. But in the process of trying new things, there is always
the risk of failure, disappointment, and frustration.

This sort of frustration and failure most often arises from ig-

9

norance—having an unclear grasp of certain operating details, mis-
understanding some of them, or, perhaps, being unaware of them
altogether. The more you know about the workings of your com-
puter, the more likely are your chances of success with new ideas.

The primary objective of this book is to help you get more fun
out of creating computer programs on your TRS-80. The idea is
to make it possible for you to engage in that unending and rewarding
adventure mentioned in the opening paragraphs of this chapter.

How does this book help you? It describes some powerful oper-
ating details that are usually mentioned too briefly or overlooked
altogether in the current Radio Shack literature. These are the sort
of operating details that make it possible for you to do new things
and to do old things in new and better ways. The descriptions give
you information that provides a logical next step in your computer
programming experiences.

There are plenty of examples and demonstrations to illustrate
the operating details under discussion, but it will be up to you to
transfer the ideas to your own programming plans. In a manner
of speaking, this book points the way to new programming possi-
bilities, but you get all the fun of seeing the ideas working within
the context of your programs.

WHICH SYSTEM DO YOU NEED?

TRS-80s are now available in such a wide variety of configurations
that it is impractical to attempt writing a book that suits all of
them equally well. It is thus necessary to draw some lines, meeting
the needs of the largest number of readers and hoping others will
find information that is useful to them and applicable to their
system configurations.

The examples and demonstrations in this book have been worked
around a Model T TRS-80 having 16K of RAM and Level II BASIC.
All information provided here applies to that system configuration.

Now, that doesn’t mean every other system is completely counted
out. Indeed, things are going to be a bit tough for anyone working
with a 4K system or one equipped with Level I BASIC. Readers in
this category ought to give serious thought to upgrading their sys-
tems—not only to get the most from this book but also to get a lot
more computing opportunities.

Readers with bigger systems will find that virtually all the ma-
terial in this book applies to their machines. Some of the numbers
will be different for Model II and Model III machines, and you
will have to work out the conversions for yourself. The spirit of
the presentations, however, is almost universally applicable.

In keeping with the notion of working toward the most popular

10

TRS-80 configuration, you will need a cassette tape machine. DOS
users will be able to work all the demonstrations, too, but there
is no DOS-related material presented in this book.

A line printer can be quite helpful in some of the discussions, but
it is never a critical requirement. Also, an expansion interface can
be used, but it isn’t necessary.

Looking ahead to work in the latter part of the book, you will
need a couple of Radio Shack program tapes: T-BUG (catalog No.
26-2001) and Editor/Assembler (catalog No. 26-2002).

You will also need a Z-80 programming reference book. The Z-80
instruction set is offered in Appendix B of this book, but there is no
room here for spelling out the details of machine-language pro-
gramming in a general sense. If you need such a book, try Radio
Shack’s How to Program the Z-80 (catalog No. 62-2066).

HOW THIS BOOK IS ORGANIZED

When most people are introduced to their first home computer,
they get a lot of delight from running BASIC programs listed in the
programming manual and, maybe, running a few “canned” pro-
grams—usually game programs.

But we have to be honest here: running simple BASIC programs
and prepared cassette tapes can wear thin after a while. Of course
you can buy more elaborate and expensive prepared programs, or
start entering some programs from published BASIC or machine-
language listings; but even if they meet your expectations (and
many of them won't), they also become old hat after a while.

One way to overcome this sagging enthusiasm for your computer
is to begin writing custom programs--cutting and trying a few of
your own invention. That can be a lot of fun, especially if you
know what youre doing. Learning to use conventional BASIC can
keep you going for a long time.

Indeed, writing custom programs in BASIC can serve a lot of
personal needs; however, it usually doesn’t take long to become
dissatisfied with certain limitations of it. Experienced TRS-80 BASIC
programmers often begin feeling straightjacketed by some of the
built-in procedures. It is quite possible to know exactly what you
want to do but find that BASIC—whether in the TRS-80 or not—
cannot handle the job as effectively or adequately as you'd like.

Animated graphics, for instance, can fall flat in BASIC because
of the long execution times for the statements involved. Or maybe
you would like to assign something more than 240 characters to a
single string variable. In such instances the built-in relationships
between BASIC and the operating system stand in your way.

There are untold instances where the structure of the system

11

and the way BASIC is meant to work serve as roadblocks to effective
programming,

One way to tackle this particular sort of problem is by digging
through the avalanche of books and magazines written for people
who want to go beyond the limitations of their present know-how.
If you have tried that route, you have probably been disappointed
more than once. It isn’t that there is anything necessarily wrong
with all that available information; it can prove quite valuable in
many ways.

But most of the literature dealing with new TRS-80 tricks and
techniques applies only to the particular situation the author is
describing. And what’s more, you always run the risk of applying
the idea without learning anything you can use on your own at some
later time.

More often than not, the real value of a book or article lies in
the gems of wisdom tucked away in the program listings or ac-
companying text. Specific solutions for specific problems may or
may not be truly helpful, but the methods and ideas behind them
can be invaluable. Therein lies the virtue of most computer books
and magazine articles.

For example, an article describing how to move a spot of light
across the screen by depressing a certain key might not seem all
that useful or exciting to you; but the technique for sensing the
key depression or drawing the moving spot can be applied in
countless ways—once you grasp the main principles behind those
actions.

This is a book about main principles. You won't have to dig
through the program listings to uncover important ideas; they are
clearly spelled out.

Yes, indeed, there are a lot of program listings in this book, but
they are intended only to illustrate the workings of the principle
at hand. The programs, as such, aren’t all that useful or exciting;
they are to-the-point illustrations and not highly refined and fully
developed programs. The programs are trimmed to the bare bones
so that the point they illustrate will stand out as clearly as possible.
Finished programs tend to be cluttered with a lot of “whistles and
bells” that obscure the finer, more important details.

It is up to you to grasp the essence of an idea presented in this
book, give it a first try with an accompanying program listing, and
then fit it into some programming schemes of your own.

The author hopes that you will find this book rich in ideas and
short on razzle-dazzle.

Finally, you should be assured at this point that the book is
not devoted exclusively to machine-language programming. Many
people who feel the itch to go beyond basic BASIC are told—or at

12

least get the impression—that the next step in their programming
experience must be in the direction of machine-language pro-
gramming.

That is not true. Growing up in the business of computer pro-
gramming is an evolutionary process. Your knowledge ought to
develop gradually and smoothly, and, for most people, moving
directly from basic BASIC to pure machine-language programming
is hardly a gradual and smooth process. In fact, it is a terrible
mistake to drop BASIC and move fully to machine-language pro-
gramming if you’ve had no training or experience with it. The change
is too big and too abrupt.

No, machine-language programming is not the first topic offered
in this book. It turns out that familiar old BASIC can become ex-
citing again, once you know more about the internal workings of
the TRS-80. You can access some very useful inner workings from
BASIC and do a lot of things that will tear down some of the usual
programming limitations.

And that’s where this book starts.

Once you know more about the system trom a BASIC viewpoint,
you are ready to begin some machine-language programming. But
even then it is possible to work into that sort of programming from
BASIC. The idea is to let you wade into the deeper waters of
machine language, while keeping a tight grasp on a familiar BASIC
handle.

Toward the last part of the book, we will finally get to purely
machine-language programming. By that time, though, you will be
well grounded in the TRS-80’s internal workings and better pre-
pared to write successful machine-language programs of your own.

So this book is for you if you want to do more with BASIC, learn
more about the internal workings of the TRS-80, ease your way
gradually into machine-language programming, and learn to devise
new and exciting programs of your own.

In short, if you are getting a little tired of your TRS-80 system,
this book ought to serve as a shot of adrenalin.

HOW TO GET THE MOST FROM THIS BOOK

This is not really a reference book, although it might have that
general appearance. The book represents a step-by-step process, and,
as such, you will get more from it by working through it from be-
ginning to end, as opposed to dipping in at some point that sounds
interesting to you.

Besides working through the material in sequence and from the
beginning, it is also helpful to study the material with your TRS-80
system right at hand. A program listing accompanies every new idea;

13

so as you read about a new idea, you should be able to try it for
yourself, right on the spot. You probably already know that the
learning-by-doing process is the most effective one for working
with computer programs.

But as mentioned earlier, the program listings are meant only
to illustrate—to emphasize—one or two key points. So not many of
the programs presented here are, in themselves, very useful. The
idea is to encourage you to try the new ideas in a bare-bones
fashion. Once you understand a new idea and have an opportunity
to see it work, you should try fitting it into a more elaborate or
useful program of your own design. If things don’t work out the
way you think they should, go back to the book and see whether
or not you have overlooked or misunderstood something.

This book is a guide—a self-teaching guide. You will get the most
from it by attempting to apply the new ideas in your fashion. It is
really based on the old notion that you can keep a man alive for a
day if you give him a fish, but you can keep him alive for a good
many years if you give him some fishing equipment and show him
how to use it.

You have all the equipment, and here come some ideas about how
to use it in more effective ways.

14

CHAPTER 2

The Video Environment

The crt screen is the most-often used output device for most
TRS-80 systems, and it turns out that this video feature has a level
of versatility that matches up fairly well with its importance. Under-
standing how the video system is set up and knowing how to use it
can go a long way toward building some fine video-oriented pro-
grams.

The purpose of this chapter is to explore the main features of
the TRS-80 video system in detail, expanding on the points that are
merely suggested or implied in the Level II BASIC Reference
Manual. Some of the video features are better implemented in
BASIC, while others are more suited to machine-language treat-
ments. The format used throughout this chapter is BASIC oriented;
later chapters illustrate some of the same principles in machine
language.

A few of the principles are of questionable value, appearing to
be rather awkward in BASIC and machine language. These prin-
ciples are described here for the sake of exploring some unusual
ideas. Even these points of questionable value will at least serve
to build your understanding of the TRS-80 video system and its
potential applications.

VIDEO DATA

The information flowing around inside a computer consists of
two parts: addresses and data. The address portion of that infor-
mation specifies where something is to be placed, and the data
portion specifies what is to be placed there.

In the context of the TRS-80 video system the addressing is usually

15

related to some position on the crt screen, and the data concerns
what is to be done at that point. This section deals with the video
data. The next section of this chapter introduces some details of
the video memory addressing.

The video data is carried as a 1-byte (8-bit) binary code, which
means there are 256 possible combinations of things that can be
done at a given point on the crt screen.

In the TRS-80 system those 256 video-related data codes can be
divided into four categories:

@ control codes—data codes 0 through 31

e alphanumeric character (ASCII) codes—32 through 127
@ TRS-80 graphic codes—128 through 191

@ TRS-80 tab codes--192 through 255

This list accounts for all 256 video data codes. Some of the functions
are redundant (do the same thing as others), and a few of the
codes do nothing at all. But, even so, there is a lot that can be done
with the video data set.

It would be nice if we could investigate the video data set in a
systematic fashion, beginning with control code 0 and progressing,
one step at a time, through TRS-80 tab code 255. Unfortunately,
the control codes and tab codes do not lend themselves to very
convincing demonstrations at this point in the discussion.

So, for the sake of avoiding undue confusion in the early going,
those control and tab codes will be explained later in this chapter.
Of immediate interest, then, are the alphanumeric character codes
and the TRS-80 graphic codes.

Aiphanumeric Character Codes

The entire TRS-80 alphanumeric character set is represented
by data codes 32 through 127. For the most part this code follows
the well-established convention developed as the American Stan-
dard Code for Information Interchange (ASCII). The exceptions
are the lack of special line, brace, and bracket symbols that appear
on ASCII code charts but not on the TRS-80 keyboard.

Table 2-1 summarizes the TRS-80 alphanumeric character set,
and if you want to see the characters on your own screen, try
this short program:

10 REM sk k ALPHANUMERIC CHARACTER SET DEMO 3k X
20 Cis

30 FOR C=32 TO 127

40 PRINT CHR$(C);

50 NEXT C

60 END

This program prints the entire alphanumeric character set (charac-

16

Table 2-1. TRS-80 ASCHl Character Set

Code (Decimal) Character Code (Decimal) Character
32 space 80 P
33 1 81 Q
34 " 82 R
35 # 83 S
36 $ 84 T
37 % 85 u
38 & 86 v
39 ! 87 w
40 { 88 X
41) 89 Y
42 k 90 z
43 + 91 ?
44 , 92 1
45 - 93 <«
46 . 94 -
47 / 9?5 J—
48 0 96 @
49 1 97 a
50 2 98 b
51 3 99 [
52 4 100 d
53 5 101 e
54 6 102 f
55 7 103 g
56 8 104 h
57 9 105 i
58 : 106 i
59 ; 107 k
60 < 108 I
61 = 109 m
62 > 110 n
63 ? 1 o
64 @ 112 P
65 A 13 q
66 B 114 r
67 C 115 s
68 D 116 t
69 E 117 u
70 F 118 v
71 G 119 w
72 H 120 x
73 I 121 y
74 J 122 z
75 K 123 1
76 L 124 {
77 M 125 <«
78 N 126 >
79 (o] 127 J—

17

ter codes 32 through 127) in about 1% lines across the top of
the screen.

If you do not have the lowercase modification for your system,
you will see the alphabetical characters (A-Z), four arrows, and
a dash printed at two places in the display. The standard system
cannot distinguish uppercase and lowercase characters, and codes
64 through 95 do the same thing as codes 96 through 127. With
the lowercase modification, the alphabet appears in a lowercase
format the second time through. So there is some redundancy here,
unless you happen to have the lowercase character generator
installed.

The CHR$(n) statement gives you access to the TRS-80 char-
acter generator in BASIC and with decimal code numbers. If you
would rather tinker around with the character generator on a one-
at-a-time basis, try this program:

10 REM 3kk CALL A CHARACTER k%

20 CLs

30 INPUT “WHAT ASCII CHARACTER CODE (32-127)";C
40 IF C<{32 OR C>127 THEN 30

50 PRINT CHR$(C)

60 PRINT

70 GOTO 30

Line 30 in this program requests an ASCII character code in the
range 32 through 127. If you happen to respond with a number out-
side that range, line 40 returns the program to line 30, thus pre-
venting you from tinkering with character or control codes outside
the range of immediate interest here.

If you are still in the mood for playing around with this character
set, it can be instructive to reverse the operation: writing a program
that lets you specify an alphanumeric or any other ASCII character
by typing it on the keyboard, and letting the computer print the
character code, itself.

10 REM >k CALL-A-CODE k%

20 CIS

30 C$=INKEY$:IF C$="" THEN 30

40 C=ASC(C$)

50 IF C>==32 AND C<=127 THEN 70

60 PRINT “THAT IS A CONTROL CHARACTER":GOTO 30
70 PRINT C$;” —;C

80 GOTO 30

On running CALL-A-CODE, you can type away on the keyboard,
and with every valid character entry you will see the character
linked with its ASCII code number. Since some of the keys generate
control codes, line 50 is necessary to avoid some FC ERROR mes-
sages that stop the program. Whenever you strike one of those

18

control keys, this program responds by printing THAT IS A CON-
TROL CHARACTER and letting you try another key.

While you are studying the alphanumeric character set with the
CALL-A-CODE program, be sure to try it while the SHIFT key is
depressed—that will give you the uppercase version of some of the
special symbols and the lowercase codes for the alphabetical char-
acters. Striking the A key with the SHIFT key not depressed, the
program shows the letter A linked to character code 65. Striking
that same key while the SHIFT key is depressed prints an A, fol-
lowed by character code 97.

Also try the arrow keys with the CALL-A-CODE routine. This
gives you code numbers for arrow characters that can be useful
for writing graphics programs having arrow figures in them.

TRS-80 Graphic Codes

Video data codes 128 through 191 hold graphic patterns that are
unique to the TRS-80. There are 64 of them in that family, and they
are all different from one another. See Fig. 2-1.

The rationale behind the structure of these figures is not really
very obvious until they are described in terms of the binary versions
of their code numbers—a task that will be handled later. But with
a table of these figures available, you don’t have to be concerned
about any discernible relationship between the code numbers and
the graphic figures they call to the screen. It is entirely possible to
build up some elaborate graphics from the decimal versions of the
graphic-code numbers.

The graphic character set can be called to the screen just as the
ASCII characters are, using PRINT CHR$(n) statements, where n
is the character code number between 128 and 191, inclusively.

To illustrate the point, try this program:

10 REM >k GRAPHIC CHARACTER SET DEMO * %k
20 CiSs

30 FOR C=128 TO 191

40 PRINT CHR$(C);CHR$(128);

50 NEXT C

60 END

This program prints out the entire graphic character set, separating
each character with a space that is called by the CHR$(128) state-
ment in line 40. Thus the graphics can be called to the screen just
as the ASCII characters are, and that should come as no surprise,
considering the graphics are generated by the same sort of read-
only-memory (ROM) device.

If you want to link the graphic characters with their decimal
code numbers in a clearer fashion, try this selection program:

19

129 130 131 132 133 135

136 137 138 139 140 141 142 143

156 157 158 150

Fig. 2-1. The family of TRS-BO graphic characters

20

168 169 170 174

176 177

179 180 182 183
184 185 186 187 188 189 190 191

and graphic codes {decimal).

21

10 REM k3 PICK A GRAPHIC > %k

20 CIS

30 INPUT “SPECIFY A GRAPHIC CODE (128-191)";C
40 IF C>=128 AND C<=191 THEN 60

50 PRINT “NOT A GRAPHIC”:GOTO 30

60 PRINT CHR$(C)

70 PRINT:GOTO 30

Now you can specify and view the graphic characters one at a time.

To get a better appreciation for what is going on here, compare
Fig. 2-1 and Fig. 2-2. For graphic purposes each character space
on the screen is divided into a set of six smaller rectangles, labeled
a through f in Fig. 2-2. A given rectangle, or pixel, within the char-
acter space is either lighted or darkened, depending on the code
number being used.

[ifo]Jefd]c[o]a]

alb o A 0 IN A GRAPHIC CODE BYTE
DARKENS ITS PLACE IN
cld CHARACTER SPACE.
= A 1IN A GRAPHIC CODE BY
el f LIGHTS ITS PLACE IN THE
GHARACTER SPACE.

(A) Geometry of the graphic (B) Graphic code byte.
character space.

Fig. 2-2. Graphic character format and character-code layout.

Graphic code 129, for example, lights the little rectangle in the
upper left-hand corner of the character space. In Fig. 2-2 that means
pixel a is lighted by a binary 1 in the a-bit space of the character
code. Code 130, on the other hand, lights the pixel in the upper
right-hand corner of the current character space, and code 131
lights both of the top pixels (both a and b).

This process goes on through the entire 64-character graphic set,
incrementing bits a through f in a binary counting sequence.

As mentioned previously, it is possible to use CHR$ statements
to call the graphic characters, and thus compose some fairly elabo-
rate graphic images on the crt. Of course, you have to know more
about the video memory in order to position the individual graphic
characters on the screen, and that is the next topic of discussion.

If you plan to compose any special graphic images, you will do
well to pick up a pad of Radio Shack’s Video/Programming Work-
sheets (catalog No. 26-2105). Those worksheets divide the screen
addresses into character spaces and graphic pixels for you: All you
have to do is sketch your graphics on the worksheet, then use

22

Fig. 2-1 to select the graphic character code required for each char-
acter space in the figure.

VIDEO ADDRESSING

If you consult a memory map for the TRS-80 system, you will
find that the video memory occupies addresses 15360 through 16383,
inclusively. That means 1024 different memory locations.

It is important to realize that those numbers represent address
locations for random-access memory (RAM) built deep inside the
TRS-80 keyboard/computer unit. The addresses refer to locations
of data within a set of those RAM chips.

It just so happens that Radio Shack engineers linked each of those
video memory addresses to a specific point on the crt screen. Tinker-
ing around with the data in the video memory is thus tantamount
to tinkering around with the video display. In fact, you cannot
print any sort of character on the screen without placing the ap-
propriate character data into some address location in the video
memory.

The correspondence between video memory addresses and geo-
metric locations on the video screen is very systematic and straight-
forward. Not all home computers use schemes that are so systematic
and straightforward.

Whenever a program places some character data into video mem-
ory location 15360 (the lowest video memory address), the character
appears at the extreme upper left-hand corner of the screen. And
by putting some valid character data into memory location 16383
(the highest video memory address) the character appears in the
extreme lower right-hand corner of the screen.

The video memory occupies 1024 RAM addresses, running se-
quentially from 15360 through 16383. The video screen is arranged
with a 16-line, 64-characters-per-line format—which also is 1024
character locations. There is a nice one-for-one correspondence be-
tween those addresses and character positions on the screen.

The first 64 video memory addresses are linked to the first line
on the screen; the second 64 memory addresses are linked to the sec-
ond line on the screen; and so on through all 1024 addresses/
locations.

Fig. 2-3 is a rough representation of the TRS-80 video screen
format: the 16-line, 64-characters-per-line format. The numbers
down the left-hand column show the video memory addresses for the
first character position in each line, and the numbers down the right-
hand column show the memory addresses for the last character
position in each line.

Suppose that you want to print an X character near the middle

23

15428 e e 15487
15488 e I, 15551
15552 - - e o e 15615
15616 o o e N 15679
15680 e S 15743
15748 e B — 15807
15808 - e N 15871
18872 e e O 15935
15936 - e o e 15999
16000 — e e 16063
16064 - — e T 16127
16128 o e o e 16191
16192 e . 16255
Y B 16319
16320 — e o e 16383

Fig. 2-3. POKE screen address format.

of the screen, which means putting the ASCII data for character
X into a video memory location that is halfway between 15808 and
15871—the extreme ends of the middle line on the screen. Since
there are 64 character spaces on the line, the midpoint is between
31 and 32 character spaces to the right, or that same number of
address locations greater than 15808,

So if you POKE an X into video memory location 15808+-32, or
15840, you will come very close to hitting the middle of the screen.
Try it. Do a POKE 15840,88. That POKEs an 88 (ASCII code for X)
into video memory address 15840.

You can POKE any ASCII character or TRS-80 graphic into any
video memory address and see the character appearing at the ad-
dressed location on the crt screen.

This represents the most direct way of dealing with the video
memory from BASIC. It takes advantage of the fact that each of the
1024 video memory addresses has a well-defined position on the crt
screen. The same things can be done in the same general fashion
in machine language, using LOAD instructions and hexadecimal
addresses and data.

The technique can be summarized this way:

POKE address, data

where
address is an address in video memory (an integer between 15360 and
16383),
data is a character code (an integer between 32 and 191).

But that isn’t the only way to address the video memory; putting
some character data into that address and having the character

24

appear at a well-defined spot on the screen. It’s the most direct way
to do the job, but Radio Shack engineers saw fit to work out some
other methods for doing the same thing in a less direct but generally
easier fashion.

PRINT @ Access to Video Memory

The PRINT @ statement accesses video memory very much
the same way a POKE statement does. Like the POKE method just
described, the PRINT @ statement includes both address and char-
acter data information, but there are some differences in the ways
the addresses and data are presented.

Recall that the video memory occupies 1024 contiguous RAM
locations between 15360 and 16383. When accessing the video mem-
ory via a POKE statement, you must specify an address with some
integer in that address range. The PRINT @ method, however, calls
for addresses between 0 and 1023.

The addressing portion of a PRINT @ statement does exactly
the same thing as the addressing portion of a POKE statement, ad-
dressing the same set of 1024 locations in video memory. The only
difference between the two portions is that the PRINT @ addresses
have lower numbers.

0 e e 63
7 e 127
128 o o e 191
192 e e 255
26 e 319
320 o __ o 383
B e a7
M8 o e 511
12 o o e 575
576 o __ e 639
640 o __ e 703
04 o 767
768 e e e 831
832 o 895
896 e S 959
960 oo e 1023

Fig. 2-4. PRINT @ screen address format.

So a PRINT @ address of 0 actually accesses video memory ad-
dress 15360—the first, lowest-numbered one; and PRINT @ address
1023 actually addresses video memory location 16383 (the highest
address location). Strictly speaking, then, a PRINT @ address is
simply a video memory address minus 15383. The first line of 64
character spaces on the crt screen are thus accessed by PRINT @
addresses 0 through 63, the second line by 64 through 127, and so on.

25

See the screen format and corresponding PRINT @ addresses, for
the extreme ends of the lines, in Fig. 2-4.

When a BASIC interpreter executes a PRINT @ address, it must
add 15360 to the PRINT @ address in order to get to the actual
video memory address. That bit of arithmetic, many believe, is a
small price to pay for working with video address numbers that
are smaller than the actual address numbers.

In all fairness it must be pointed out that there is more than
the use of smaller address numbers involved in the PRINT @
statement. The data part of the statement can be much more com-
plicated than is possible with a POKE statement.

The data portion of a PRINT @ statement must have a string
character to it. POKE data must be offered in a character-code
format, while PRINT @ data has to be equivalent to a string.

To illustrate this point, suppose you want to print an A character
at the first character location on the first line of the screen. A POKE
15360,65 will do the job, and so will a PRINT @ 0,”A". So will a
PRINT @ 0, ASC(65), letting the ASC function convert the char-
acter code into its string version. When the BASIC interpreter sees
the data portion of a PRINT @ statement, it must convert it from
a string version into a character-code version that can be effectively
POKEd into video memory. This conversion, like the matter of
adding 15360 to the PRINT @ address, eats up some execution time.

So the PRINT @ statement, although it has the same general
format as POKE, runs much more slowly than a direct POKE does.
But the PRINT @ statement is justified by the fact that it can deal
with a long string (up to 255) of alphanumeric ASCII characters.
The first character in the string is stored in the address indicated
by the PRINT @ statement. Successive characters are then stored
in successive video memory locations.

Suppose that you do a PRINT @ 0,"WHAT IS GOING ON
HERE?" That string message will appear in the upper left-hand
corner of the screen, because the first W in the message is loaded
into PRINT @ address 0. The remaining characters in the message,
if you care to count them, occupy PRINT @ addresses 1 through 21.
The BASIC interpreter automatically increments an address counter
to deposit the ASCII version of the characters into successive video
memory locations. If you tried to print out that same message, using
a POKE method, you would have to increment the memory addresses
yourself. Look at this:

10 REM 3k POKE STRING DEMO > %k
20 A0=15360:A1=16383

30 Cis

40 FOR A=A0 TO Al

50 READ C$

26

60 IF C$="4t" THEN 60

70 POKE A,ASC(C$)

80 NEXT A

100 DATA WHAT" “1S,” “GOJING,” "ON,” “HERE?,

This isn’t the only way to go about writing string messages with
POKE statements, but the alternatives aren’t significantly simpler.
Indeed, PRINT @ statements show some real promise when it
comes to writing strings of characters.

Incidentally, the PRINT @ data is not limited to the ASCII
character set; it can be used for displaying the TRS-80 graphic set
as well. All you do is specify the graphic code (128-191) as a
“string,” by applying the CHR$ function. For example, PRINT @
543,CHR$(191) prints a white rectangle near the middle of the
screen—PRINT @ address 543, graphic code 191.

So as a point of interest, at least, you can see that it is possible
to build some nice screen graphics using the PRINT @ statement.

Finally, the PRINT @ statement has one further advantage over
its POKE counterpart: a programmer cannot inadvertently poke
data into memory locations outside the video memory range.
PRINT @ statements do not allow addresses outside the range
of 0 to 1023. Attempting to do a PRINT @ 2000, data, for example,
will simply result in an FC ERROR message. POKEing outside the
video memory range risks a blowup of the program.

When it comes to doing video graphics and printing messages
on the crt, the PRINT @ statement has a lot of advantages over
its POKE counterpart. The only trade-off is the relatively slow speed
of PRINT @--a feature made necessary by all the number crunching
that takes place when compiling and executing a PRINT @. The
following program clearly illustrates the difference in execution
speed for POKE and PRINT @:

10 REM k% PRINT @/POKE GRAPHICS SPEED CONTEST
20 CLS

30 PRINT “POKE RUN"

40 FOR A=15424 TO 15487

50 POKE A,191

60 NEXT A

70 PRINT:PRINT “PRINT @ RUN”
80 FOR A=192 TO 255

90 PRINT @ A,CHR$(191)

100 NEXT A

110 END

The first part of the program, lines 30 through 60, use POKE
graphics to fill a line with solid white rectangles (character code
191). The second part, lines 70 through 100, do the same thing, but
using PRINT @ graphics.

27

The two horizontal white bars are drawn in succession, but the
differences in drawing speeds are fairly obvious.
The PRINT @ statement can be summarized this way:

PRINT @ address, data

where
address is a PRINT @ address between 0 and 1024,
data is a string-related character, variable, or string of characters.

Relative Video Memory Addressing With Primitive PRINTs

POKE and PRINT @ statements access the video memory in an
absolute fashion. That is to say, the addresses refer directly to some
specific address in the video memory. The remaining techniques for
working with the video memory use relative addressing.

Using relative addressing often simplifies the task of programming
the video format, but it separates the program even further from
the actual video memory system, and the execution time is length-
ened as a result.

For our immediate purposes here, a primitive PRINT statement
is a PRINT followed by “ * (quote-space-quote) or nothing at all.
A primitive PRINT changes the position of the cursor on the screen;
and by doing a proper selection of PRINT and PRINT ” * state-
ments, it is possible to place the cursor at any desired point on the
screen.

What does this have to do with video memory addressing? Recall
that every character position on the screen has a well-defined video
memory address. Doing a PRINT statement changes the setting
of an address counter, incrementing it to deposit data into successive
video address locations. The location of the cursor on the screen
is a reflection of the next video memory address to be used.

As a specific example, suppose you execute this program:

10 CiS
20 PRINT* I/;ll II;IIXII

The CLS operation clears the screen and homes the cursor (sends it
to the extreme upper left-hand corner of the screen—to video mem-
ory address 15360). Printing two spaces in succession, separated by a
semicolon, moves the cursor two spaces to the right along the top
line, and the X appears in the third space on the line. The character
code for X ends up in video memory address 15362.

In this case you do not have to specify the exact address for
the X character code—15362 for the POKE method, or 2 for the
PRINT @ method. The two successive PRINT-space operations
simply move the cursor two spaces from its starting position. An

28

internal cursor counter takes care of converting this relative address
change into absolute direct memory addresses.

Here is a trick that is used quite often in BASIC programs aimed
at doing some screen formatting:

10 CLs
20 PRINT:PRINT
30 PRINT “X“

As in the previous example the opening CLS statement sends the
cursor to the lowest video memory address location. The two suc-
cessive PRINT statements in line 20 cause the cursor to skip down
two lines on the screen, and the X ends up at the beginning of the
third line on the screen.

Unless instructed to do otherwise, every sort of PRINT statement
in BASIC is terminated by a line-feed/carriage-return operation.
In terms of the video memory addresses and the screen format (see
Fig. 2-3) this means setting the video memory address counter to
the next address representing the beginning of a new line. Refer
to the addresses in the left-hand column in Fig. 2-3.

So the CLS statement sends the cursor to video memory address
15360. The first of the two PRINT statements in line 20 sends the
cursor to address 15424, and the second one sends it to address
15488. The X is deposited at that location by line 30, and that opera-
tion (being a PRINT operation) ends by setting the cursor to
address location 15552. You must refer to Fig. 2-3 to appreciate
this explanation.

Primitive PRINT addressing is relative addressing in the sense
that you do not have to specify an exact address anywhere along
the line. The cursor is moved the specified number of lines or spaces
from its initial position, and that initial position can be anywhere
on the screen. The addressing began at 15360 in the previous ex-
amples only because the programs began with a CLS operation—
one that takes the cursor to 15360. You can actually begin anywhere
you want.

Not having to reckon with absolute video memory addresses often
simplifies video-oriented programming. If, for instance, you want
to skip two spaces on a line before printing another character,
simply do a PRINT " “; “. That will do the trick—the BASIC com-
piler takes care of figuring out the absolute memory addresses to be
loaded with the space code (ASCII 32).

Now, it was mentioned earlier in this discussion that every PRINT
statement is followed, automatically, by a line-feed/carriage-return
operation—unless instructed to do otherwise. Instructing the system
to inhibit that automatic line feed/carriage return is a matter of
terminating the PRINT statement with a semicolon. That is how

29

it is possible to skip two character spaces on the same line by
doing PRINT “ ;" “;.

The primitive PRINT scheme allows you to view the video screen
as a two-dimensional coordinate system. You can, in other words,
locate a character on the screen by thinking in terms of the number
of lines down and the number of character spaces to the right. So
if you want to print an X near the middle of the screen, you can do
that by first homing the cursor (for convenient reference), skipping
down eight lines (in a 16-line format) and 31 character spaces
to the right along that line (in a 64-characters-per-line format). The
program looks something like this:

10 CIS

20 FOR L=1 TO 8:PRINT:NEXT L

30 FOR S$==1 TO 31:PRINT " “;NEXT S
40 PRINT "X"

More compelling applications of the primitive-PRINT scheme
are offered in the next chapter. The important point here is that
PRINT statements offer a relative video memory addressing scheme
and the opportunity to build displays based on a vertical/horizontal
coordinate system.

To be sure, this scheme eats up more BASIC programming mem-
ory and execution time than POKE and PRINT @ methods do, but,
used on a small scale, the relative addressing feature of primitive
PRINT formatting can simplify the original programming task.

Horizontal Addressing With PRINT TAB

PRINT TAB statements allow you to simplify the task of speci-
fying a printing location along a given line. If you do a statement
such as PRINT TAB(n)"X", where n is any integer between 0 and
63, you can place that X at any desired space location (0 through 63)
along a given line on the screen.

10 CLS
20 PRINT TAB(31)"X"

This program prints the X very close to the middle of the top line
on the screen. And if you want to put the X near the middle of
the screen, try this:

10 CLS
20 FOR L=1 TO 8:PRINT:NEXT 1L
30 PRINT TAB(3T)"X"

The first part of the program, lines 10 and 20, uses the line-skipping
routine, described in the previous section of this chapter, to find
the beginning of the middle line on the screen. The PRINT TAB

30

statement in line 30 both runs the cursor to the middle of that line
and prints the X character. Using the PRINT TAB statement repre-
sents an improvement over doing the same thing with a series of
PRINT “ *; primitives.

Behind the scenes, a PRINT TAB(n) statement causes an abso-
lute video memory address counter to increment n counts, effectively
placing the cursor n places to the right of its starting position. The
data specified by the PRINT TAB statement is automatically POKEd
into that newly counted video memory address location.

Incidentally, it is possible to specify PRINT TAB numbers up
to 255, but it turns out that any over 63 are redundant. For instance,
PRINT TAB(0), PRINT TAB(64) and PRINT TAB(128) set the
character to the first character space on a line. So using PRINT TAB
numbers larger than 63 changes nothing, and only adds to possible
confusion on the part of the programmer.

As in the case of any PRINT statement, a PRINT TAB is auto-
matically followed by a line-feed/carriage-return operation, unless
followed by a semicolon. So if you do a PRINT TAB(31)“X", the
X will appear in the middle of the current line, but the cursor will
be resting at the beginning of the next line. By contrast, a PRINT
TAB(31)"X"; prints the X at the middle of the current line and
forces the cursor to remain at the next character space on that
same line,

The fact that you can suppress the line-feed/ carriage-return oper-
ation makes it possible to pull off some useful one-line tricks. Try
this:

10 CiLs
20 PRINT TAB(31)"X";
30 PRINT TAB(40)"Y"

This program prints the X near the middle of the first line on tHe
screen. The semicolon at the end of line 20 inhibits the normal line-
feed/carriage-return operation, so the Y appears in space 40 on the
same line—nine spaces to the right of the X.

Unfortunately, it is not possible to set the absolute memory ad-
dress counter backwards. It counts forward only. So, in the previous
example, you will have some trouble if you print the Y at space
position 40 first, and then try to print the X at space position 31.
The Y will end up at position 40, but the X will appear at position
41, in spite of the fact you specify a PRINT TAB(31) for it.

In a rnanner of speaking, the n values in a PRINT TAB(n) state-
ment represent a form of absolute addressing—absolute addressing
with reference to character spaces on a given line on the screen.
If you view a line of text as made up of locations 0 through 63, the
TAB values refer absolutely to one of those 64 locations.

3

PRINT TAB statements can handle TRS-80 graphics as well as
the standard ASCII code. If you want to print a rectangle of light
at the middle of a line, just do a PRINT TAB(31 YCHR$(191). Any
of the graphic-code numbers (128-191) can be worked into that
CHRS$ data statement. You can thus use combinations of primitive
PRINT statements (to select lines) and PRINT TAB statements
(to select character spaces on a line) to do some graphics that
combine alphanumerics and graphic symbols.

Relative Character-Space Addressing
With TAB Confrol Codes

The upper end of the TRS-80 character/ control video set includes
some numbers that Radio Shack calls “space compression codes.”
From BASIC, these codes can be executed by a PRINT CHR$(n)
statement, where n is an integer between 192 and 255, inclusively.
But what do those so-called space compression codes do?

Used with PRINT CHR$(n), the space compression codes func-
tion in a manner similar to PRINT TAB(n). The codes indicate a
number of spaces to be skipped (to the right) on a given line on
the screen. Unlike PRINT TAB, however, the space compression
codes have a relative addressing quality: the cursor is moved a
given number of spaces, beginning from its current position, and
not always from the beginning of a line.

There are 64 TAB control codes in the range of 192 through 255,
and there are 64 character positions on each line of text on the video
screen. The match of these two numbers is hardly incidental.

To see how the TAB control codes work, suppose the cursor
is resting at space number 31 on a particular line on the screen—
that's near the middle of the line. But then you want to skip two
more spaces to the right. There are two ways to go about it: you
can do a PRINT TAB(33) or a PRINT CHR$(194);. The PRINT
TAB version specifies an absolute character space that turns out
to be two character units to the right of the original one—really, the
33rd space from the beginning of the line. PRINT CHR$(194), on
the other hand, moves the cursor two spaces to the right of its cur-
rent position—there is no reference to the beginning of the line.
But where did the 194 come from?

The TAB control codes allow you to move the cursor s spaces to
the right, where s is an integer between 0 and 63, inclusively. The
actual code number to be specified, however, is always equal to
192 (the smallest TAB control number) plus s. To move the cursor
two spaces to the right of its current position, s=2 and the TAB
control code is 192+2, or 194. That’s where the 194 comes from in
the previous example.

The operation can be summarized this way:

32

PRINT CHR$(192+3);

where
s is the number of character spaces the cursor is moved to the right of its
current position.

Specific applications of such principles are reserved for the next
chapter, but one such application can serve here to illustrate the
usefulness of the TAB control codes.

Suppose you want to fill the top line on the screen with asterisks,
each separated from the previous one by a space. The job could
be done this way:

10 Cis

20 FOR N=1 TO 32
30 PRINT “x ;

40 NEXT N

The PRINT asterisk-space combination in line 30 does the job. Or,
if you are willing to sweat out some math, you could do the job
with absolute PRINT TAB values:

10 Ci$

20 FOR N=1 TO 32

30 IF INT(N/2)<>N/2 THEN PRINT TAB(N)"x*
40 NEXT N

Or, to take advantage of the TAB control codes, you can do this:

10 CLS

20 FOR N=1 TO 31

30 PRINT CHR$(193);PRINT %k *;
40 NEXT N

To be sure, the last example is not significantly simpler than the
first one, but that is only because the situation calls for skipping
just one space between the asterisks. If you want to skip four
spaces, PRINT CHR$(196) is more elegant than a PRINT “

Since the TAB control codes use relative space addressing, it is
altogether possible to specify code numbers that will overflow a line,
calling for moving the cursor more spaces than remain on a given
line. The TAB control function handles that sort of situation by
resuming the count on the next line. Anytime you follow a printing
operation with PRINT CHR$(255), for example, the next character
will be printed directly below the previous one—the cursor will
advance 63 spaces to the right of the current cursor position. One
might argue that the same position on successive lines are separated
by 64 character spaces, and not 63. That is quite true, but bear in
mind that the cursor always rests one character space to the right

33

of the last-printed character; advancing the cursor 63 spaces from
that point will position the next-printed character directly under the
first one.

Working Directly With the Cursor Counter

With the notable exception of the POKE method of working with
the video memory, all the screen formatting techniques described
thus far in this chapter take advantage of a cursor counter; a register
in the Z-80 microprocessor that keeps track of the one-for-one rela-
tionship between video memory addresses and print positions on
the crt. These cursor-oriented operations run more slowly than
POKEs do, but they are generally easier to use.

It is possible to access that cursor counter, PEEKing at the cursor
address or POKEing new cursor addresses into it. The cursor address
is accessible in a section of dedicated RAM that Radio Shack calls
the “video display control block.” The cursor address is carried as
a 2-byte number in RAM addresses 16416 and 16417. The least
significant byte (Isb) of the cursor’s address is saved in location
16416, and the most significant of the two bytes (msb) is in 16417.

So if you want to see the contents of that cursor-position register,
you can get to it by doing something such as PRINT PEEK (16417,
PEEK(16416). That will give the cursor position as it stands after
completing that PRINT operation. (The suggested PRINT opera-
tion, you see, affects the position of the cursor and hence the con-
tents of the registers PEEKed into.) At any rate, that operation will
give you a convincing feeling that you can, indeed, get to the
cursor-counting register.

Whenever you PEEK into the cursor register, you will find that
the number from the msb position (address 16417) is an integer
between 60 and 63. The number from the Isb position (address
16416) is an integer between 0 and 255. Those are the cursor screen
coordinates in a decimal format.

The msb divides the screen into four sets of lines, each set having
four lines. This accounts for all 16 lines on the video screen. The
Isb divides each line into 64 character spaces: 0-63 indicates a char-
acter space on the first line of any of the four groups of lines, 64—
127 indicates character spaces on the second line in each group of
four lines, 128191 is for the third line in each group, and 192-255
is for the last of the four lines in each group.

So if the cursor happens to be resting at the first character space
in the first line on the screen, the msb of the cursor address is 60
and the Isb is 0. But if the cursor is at the second space on the
second line, the msb is 60 and the Isb is 65.

Fig. 2-5 summarizes the cursor coordinate addresses for the be-
ginning and end of each line on the screen.

34

MSB LSB MSB LSB

B0 0 o 80 63
60 64 . e 60 127
60 128 e 80 191
80 192 e 4 60 255
Bl 0 e 61 63
61 64 e e 61 127
61 128 o R 61 191
61 192 o o e 61 255
62 0 e o 62 63
62 64 e 62 127
62 128 . e 62 191
62 192 o o e 62 255
I o e 63 63
63 B4 e 63 127
63 128 o o e 63 191
63 192 o e 63 255

THE MSB AND LSB FOR CURSOR COORDINATES ARE
STORED AT RAM ADDRESSES 16417 AND 16416, RESPECTIVELY

Fig. 2-5. Cursor-counter screen address format.

As mentioned previously, PEEKing into the cursor-position regis-
ter and PRINTing the results can be a confusing operation because
the PRINT operation, itself, advances the cursor position. A better
way to make a convincing demonstration is by POKEing coordinates
into the cursor-position register and having a PRINT operation
print some well-defined character on the screen. Try this:

10 CLS

20 INPUT “MSB’;MSB

30 IF MSB<{60 OR MSB>63 THEN 20
40 INPUT "LSB”;LSB

50 IF LSB<C0 OR LSB>255 THEN 40
60 CLS

70 POKE 16416,LSB:POKE 16417,MSB
80 PRINT “X*;

The program requests the msb and Isb coordinates from you. It
is goofproofed to prevent you from specifying out-of-range figures.
Once you have entered the coordinates, the program clears the
screen and prints an X at the point you specified. You will see that
the format follows Fig. 2-5 quite nicely.

This is an unusual tool for positioning the cursor on the screen.
There are some fine applications for the idea of PEEKing into the
cursor-address register, but they will have to await a later discussion.

There is a Level II function that does, in its own fashion, PEEK
into the cursor-address register. That is the POS(x) function.
POS(x) looks into the cursor-address register and returns an integer

35

between 0 and 63, indicating the horizontal position of the cursor
at the moment the function is called. The x argument, incidentally,
is a dummy argument and can be any alphanumeric character.
For future thinking it may be helpful to realize that the msb and
Isb numbers representing the cursor-address position are actually
2-byte versions of the actual video memory address. The first cursor-
address position, for example, is 60,0; and in terms of the video
memory addresses, that first position is 15360. If you convert that
63,0 combination into hexadecimal, you get 3CO0H. And by con-
verting 3C00 hexadecimal into decimal, you get 15360. (These con-
version techniques are described in greater detail in a later chapter.)

SET/RESET Video Memory Addressing

The SET(x,y) and RESET (x,y) functions are fairly well docu-
mented in the standard TRS-80 literature, and there is no real need
to dwell on the general applications here. Bear in mind that x is an
integer between 0 and 127, and y is an integer between 0 and 47.
The SET function turns on a spot of light at its designated x,y
coordinates, and RESET darkens the spot at those character co-
ordinates.

The BASIC interpreter translates those x,y coordinates into abso-
lute video memory address locations, inserting one of the graphic-
code numbers (128-191) as appropriate to the configuration of spots
of light in a given character space. See the relationships between the
x,y coordinates and screen positions in Fig. 2-6. Radio Shack’s
Video/Programming Worksheets spell out this relationship in a
clearer and more useful fashion.

It is quite possible to write a BASIC program that will print out
the graphic-code number and video address for each graphic ele-
ment previously generated by the SET/RESET statements. That
project is left to the reader as an exercise in applying much of the
material presented thus far in this chapter.

VIDEQ CONTROL CODES

Data codes 0 through 31 do jobs other than print characters on
the screen. They are video/line-printer function codes that call
ROM subroutines for doing certain print-related tasks. See Table 2-2.

The control functions are normally generated by striking the
special control keys on the keyboard, but they can be called during
the execution of a BASIC program by doing a PRINT CHR$(n)
statement, where n is the control-code number from Table 2-2.

The following discussions deal only with the control codes that
influence the cursor position on the crt and hence the current ad-
dress of the video memory.

36

W OO DN LN D -

ANNANNNANNANANAN

Fig. 2-6. SET/RESET screen address format.

37

Table 2-2. Summary of Control Codes and Functions for the TRS-80

Decimal Ceode Control Function
0-7 None
8 Backspace and erase current character
9 None
10 Line feed/carriage return
11,12 Go to top of next form (line-printer function)
13 Line feed/carriage return
14 Turn on cursor
15 Turn off cursor
16-22 None
23 Convert o 32 characters per line
24 Backspace the cursor
25 Advance the cursor
26 Downward line feed
27 Upward line feed
28 Home the cursor
29 Cursor to beginning of current line
30 Erase to end of current line
31 Clear to end of frame

Line Feed/Carriage Return

Generally speaking, a line feed/carriage return drops the cursor
down one line and then moves it to the beginning of that line. An
important exception occurs when the cursor is resting on the bottom
line of the crt display; doing a line feed/carriage return at that
point scrolls the entire display up one line and moves the cursor to
the beginning of that bottom line.

Striking the ENTER key generates a line-feed/carriage-return
code (code No. 13) anytime the system is responding to characters
typed on the keyboard. And when a BASIC program is running, any
PRINT statement that is not terminated with a semicolon will call
a line feed/carriage return.

You can insert a line feed/carriage return anywhere you wish in
a BASIC program by either

PRINT CHR$(10);
or
PRINT CHR$(13);

Yes, indeed, you can accomplish the same effect with a simple
PRINT primitive, but we are trying to illustrate a principle here
that will prove useful later on.

Relating this line-feed/carriage-return operation to the video
memory address, the line-feed portion effectively adds 64 to the

38

current cursor address—this drops the cursor down one line. The
carriage-return part of the operation then backs up the address to
the point where statement POS(X) would return a 0—to the be-
ginning of that line.

When a line feed/carriage return calls for a scrolling of the
entire display, the cursor address is kept at the first space on the
bottom line, but a 64 is subtracted from the addresses for all char-
acters, except those on the top line. All characters, in other words,
undergo an upward line feed, and those on the top line are lost.

Home the Cursor, Clear to End of Frame

Control codes 28 (home the cursor) and 31 (clear to end of
frame) can be used separately, but one of their most useful applica-
tions use them together.

Homing the cursor sends it to the lowest video memory address:
to the extreme upper left-hand corner of the screen. You can imple-
ment the function in a BASIC program by doing a

PRINT CHR$(28);

Any successive printing operations will then be referenced to this
home point. The semicolon at the end of the statement is necessary
to prevent an automatic line feed/carriage return—an operation
that will carry the cursor to the beginning of the second line from
the top of the screen.

In terms of video memory addressing, doing a home-cursor opera-
tion simply sets the cursor address counter to 15360, or 60,0 if you
want to consider the 2-byte address format.

Control code 31 is not really a cursor-moving operation, but it
clears the screen from the address of the cursor to the highest video
memory address. So if the cursor happens to be situated in the
middle of the screen when a BASIC program encounters

PRINT CHR$(31);

the cursor does not move, but the remainder of the line and all
successive lines to the bottom of the screen are cleared.

As far as the internal working of the computer is concerned, doing
a clear-to-end-of-frame operation inserts data code 32 (a space)
into all address locations from that of the cursor to the highest video
memory address (16383).

As mentioned earlier, control codes 28 and 31 are often used to-
gether and in that particular sequence. Insert this statement into
a BASIC program:

PRINT CHR$(28);CHR$(31);

39

That sequence homes the cursor and clears to the end of the frame.
In this case, clearing to the end of the frame amounts to clearing
the entire screen. The sequence does the same thing as the CLS
statement or striking the CLEAR key when the system is in its
command mode. .

Move to Beginning of Line and Erase to End of Line

Control codes 29 (move the cursor to the beginning of the current
line) and 30 (erase to end of current line) work just like codes 28
(home the cursor) and 31 (clear to end of frame). Codes 29 and 30
deal only with the current line of text, however, while 28 and 31
deal with the entire screen.

Whenever you want to return the cursor to the beginning of its
line, without erasing any characters along the way, insert this
statement into a BASIC program:

PRINT CHR$(29);

This operation sets the cursor-address counter back to an address
representing the beginning of the current line. If POS(X) happens
to return a 31 before the operation is executed, it will return a 0
after the operation is done.

Erasing all the characters between the cursor and the end of its
line is a matter of writing this statement into a BASIC program:

PRINT CHR$(30);

This causes the computer to insert a character code 32 (space) into
each address location, beginning from the cursor and ending at
the extreme right end of the current line. The cursor position is not
affected by that clear-to-end-of-line operation.

Erasing an entire line of text, regardless of the cursor’s position
on that line, is a matter of using these two codes in succession:

PRINT CHR$(29);CHR$(30);

The first part of the statement moves the cursor to the beginning of
the current line, and the second part erases everything to the right
of it on that same line. In effect, the statement clears the entire line.
The cursor remains at the beginning of the line, perhaps giving
you the opportunity to replace it with fresh characters.

Turn On/Turn Off the Cursor

When one is writing a BASIC program or working with the system
in its command mode, the TRS-80 automatically turns on the cursor
symbol to indicate the printing position of the next character. The
cursor figure, however, is normally turned off while running a

40

BASIC program. Whenever you execute a program that generates
a long series of alphanumeric characters, for example, you do not
see the cursor figure as it buzzes along, indicating the next character-
printing position.

It is possible to turn on the cursor figure and observe its position
on the screen during a BASIC program by inserting the statement:

PRINT CHR$(14);

After that, you will be able to see the cursor, wherever it goes. As
you might imagine, being able to see the cursor during the execution
of a program can be a valuable aid in keeping track of what is
going on and in editing screen graphics.

The turn-on-cursor contro! code can be executed just one time,
and it will remain in effect until some other operation forces it off.
So a PRINT CHR$(14); is normally inserted at the beginning of a
BASIC program.

Turning off the cursor is a simple matter of executing the BASIC
statement:

PRINT CHR$(15);

After seeing this statement, the cursor remains turned off until an-
other turn-on operation occurs.

The next section of this chapter illustrates some important appli-
cations of the cursor turn-on control code.

One-Step Cursor Operations

Control codes 24, 25, 26, and 27 increment the cursor position
back one space, forward one space, down one line, and up one line.
The contents of the video memory are left unchanged in the process.

Here is a summary of these operations as implemented in BASIC:

PRINT CHR$(24);—This statement backspaces the cursor position
by effectively subtracting a 1 from the cursor-
position address.

PRINT CHR$(25);—This statement advances the cursor position one
space, effectively adding a 1 to the current
cursor address.

PRINT CHR$(26);—This statement drops the cursor position down
one line, but maintains the same horizontal po-
sition. This is done by effectively adding 64
to the current cursor address. The downward
line-feed operation wraps around to the top of
the screen whenever the cursor is on the bot-
tom line.

41

PRINT CHR$(26);—This statement moves the cursor position up
one line, but maintains the same horizontal po-
sition. The cursor address, in effect, has a 64
subtracted from it. Doing this upward line feed
while the cursor is already on the top line causes
it to wrap around to the bottom line.

These statements can be written into a BASIC program to
achieve some useful formatting effects, doing things such as re-
serving a portion of the screen for in-line text printing and another
portion for video graphics. This is sometimes called split-screen
formatting, but the standard Radio Shack literature says little, i
anything, about it.

It turns out that the four arrow keys on the TRS-80 keyboard
will generate the one-step cursor motion codes—if you strike them
while depressing the SHIFT key. The keys do not generate the
right cursor-control codes when the system is in the command
mode, however. You must use them in a BASIC execution mode.
Here is a little program to demonstrate the point.

10 PRINT CHR$(14);CHR$(28);CHR$(31);
20 C$=INKEY$:IF C$="" THEN 20
30 PRINT C$;

40 GOTO 20

Line 10 turns on the cursor symbol, sends it home, and clears to
the end of the frame. Line 20 then picks up a string character from
the keyboard, and line 30 executes the PRINT operation on the
key character.

As long as you are striking the alphanumeric keys you will see
the characters printed on the screen. The cursor symbol will be
there to indicate the position of the next-printed character.

The main point of the demonstration is the use of the arrow keys,
though. So depress the SHIFT key and strike one of the arrow keys.
You will see the cursor responding as outlined earlier in this section.
The back arrow makes the cursor move to the left, the up arrow
makes it move up one line, and so on. You don't get the same sort
of response if the SHIFT key is not depressed.

Also note that you can use this shift/arrow-key feature to move
the cursor through printed text without altering it. It deletes the
character at its current position, but replaces it when you move the
cursor somewhere else on the screen.

This suggests some elementary word-processing operations, giving
you an opportunity to edit characters in the text without messing up
a whole line of them. You can replace a character with another one
by setting the cursor to that character position and striking the key

42

representing the desired character. Or you can delete the character
by striking the space bar.

Backspace and Delete Current Character

Control code 8 works just like the backspace operation just
described (control code 24), except that it deletes the character as
it goes along. Doing PRINT CHR$(8); is the same thing as striking
the back-arrow key when the system is the command mode of
operation.

CHAPTER 3

The Keyboard Environment

Just as the most-used output device for the TRS-80 is its crt
screen, the most-used input device is its keyboard. The keyboard
environment is neither as sophisticated nor as versatile as the video
environment, but understanding its operating features can go a long
way toward building some especially useful programs.

In the command mode of operation the keyboard is normally
linked to the video display system. Every keystroke produces a well-
defined response on the screen—printing characters, spacing, line
feeding, and so on. See the sPECIAL NOTE on page 45 for an exception
to this general idea.

There are two BASIC statements that let you interact with an on-
going program from the keyboard: INPUT and INKEY$. Both state-
ments are well documented in the standard TRS-80 literature, but
the first two sections of this chapter consider them in more detail,
illustrating some applications that can be quite useful.

As you might suspect, there are some more subtle ways to deal
with the keyboard, PEEKing around in the so-called keyboard
memory part of the TRS-80 memory map. As in the case of such
schemes in the video environment, some of these PEEK-keyboard
routines will appear a bit cumbersome when used in BASIC, but
understanding the principles will make it easier for you to grasp the
essence of some keyboard operations in machine language. The
latter part of the chapter is devoted to some of these unconventional
keyboard-input notions.

THE STANDARD INPUT STATEMENT

The INPUT statement allows in-line interaction with a program,
halting the execution of that program until the user strikes the

44

SPECIAL NOTE

It is possible to link the keyboard directly to a standard Radio Shack
line-printer system by doing:

POKE 16414,141:POKE 16415,5

Doing this, all PRINT and LIST statements and commands affect the
line printer instead of the video display. In effect, it replaces the video
display with the line printer.

Since the line printer responds only after seeing the end of a line of
text, it prints nothing until you strike the ENTER key or it finds the end
of a program line.

Unfortunately, this scheme doesn’t always work with nonstandard line-
printer systems—those using printer-driving software. In such instances,
doing the suggested POKEs sends the system “into outer space,” and the
only way to recover is by switching the computer off and on again.

If the scheme works for your line-printer system, you can always return
to the normal video link by doing:

POKE 16414,88:POKE 164154

ENTER key. The main purpose of INPUT is to allow the operator
to enter some necessary numerical or string values,

Nature of the INPUT Statement
The BASIC INPUT statement has the general form:

INPUT “message’;variable

The message portion of the statement is optional, so it can be ex-
pressed as:

INPUT variable

The message option lets you prompt the operator, spelling out the
nature of the variable to be entered from the keyboard. You can,
however, accomplish the same sort of thing with this sequence of
statements:

PRINT “message’;:INPUT variable

On encountering an INPUT statement the system prints a ques-
tion-mark prompt symbol, followed by the cursor symbol. The
question mark indicates that the system is expecting data from the
keyboard, and the cursor symbol marks the point on the screen

45

where that data will appear as the user types it in. The prompt and
cursor symbols are generated in ROM, and there is nothing you can
do to change their configuration, but you do have some options
regarding their position on the screen.

When using the INPUT “message”;variable format, the prompt
and cursor symbols always appear in the two character spaces fol-
lowing the end of the message. The semicolon is responsible for
this business of inhibiting a line feed/carriage return that would
otherwise place the prompt and cursor symbols at the beginning
of the next line on the screen. Try as you might, however, you can-
not link a message with a variable in an INPUT statement without
using the semicolon—a SYN ERROR message shows up every time.

But if you leave out the “message”; part of the INPUT statement,
you do have some choice in the matter of placing the prompt and
cursor symbols. Compare these two sets of operations:

PRINT “message’’;:INPUT variable
and
PRINT “message’:INPUT variable

In the first instance, the prompt and cursor symbols appear on the
same line as the message. The semicolon inhibits the line feed/
carriage return that normally follows a PRINT statement. In the
second case the prompt and cursor appear at the beginning of the
line below the message.

While the PRINT “message”/INPUT wvariable combination is
more cumbersome than a simple INPUT “message’;variable state-
ment, the former allows for a lot of different kinds of screen for-
matting. Suppose, for instance, you want the prompting message
to appear at the upper left-hand corner of the screen, but, for some
reason, you want the keyboard entry for variable to appear near the
bottom, left-hand corner.

10 PRINT @ O, “INPUT YOUR VALUE";
20 PRINT @ 832,/;
30 INPUT V

Line 10 PRINTs the prompting message in the upper left-hand
corner of the screen and inhibits the line feed/carriage return. Line
920 prints nothing at PRINT @ location 832 (double quotes with no
space between them is a nonprinting “null” character) and inhibits
the line feed. The prompt and cursor for the INPUT statement in
line 30 thus appear at PRINT @ location 832.]

The nice feature here is that you can prompt an input and accept
it at two different places on the screen without affecting any text or

46

graphics that might be situated in between. The same sort of thing
can be done with many of the cursor-moving video operations
described in Chapter 2.

Just bear in mind that an INPUT statement is not fully executed
until the user ends the input operation by striking the ENTER key.
And striking the ENTER key causes a line feed/ carriage return that
will scroll the display if the INPUT cursor is on line 14 or 15.

The variable portion of the INPUT statement specifies the vari-
able type and assigns the keyboard input data to it. The variable
can be either a numeric or string variable, the former expressed
without a dollar sign and the latter with a dollar sign. In either case
the keyboard entry operation is not complete until the user strikes
the ENTER key.

It is possible to use a single INPUT statement to enter values for
more than one variable; simply separate the variable names/types
by a comma:

INPUT NL$,1$,A

That INPUT statement will expect three different variables from
the keyboard: two strings, followed by a numerical variable. The
values for the variables can be entered one at a time or in a sequence.

To illustrate the point consider an example. Suppose that NL$
represents a person’s last name, I$ is the middle initial, and A is his
or her age. If you decide to enter these variables one at a time, the
screen format shows a single question-mark prompt symbol when
it is time to enter the first variable:

? JONES < ENTER>
(4

Typing in the name and striking the ENTER key, you note that
the double question-mark prompt appears at the beginning of the
next line. The system is expecting the second variable.

? JONES CENTER>
7% F ZENTER>
?9_

On entering the second variable, the prompt and cursor symbols
for the third one appear at the beginning of the next line. The num-
ber of question marks does not increase beyond two, however. At
this point the machine is expecting a numerical variable—the “age”
variable in this example.

$ JONES < ENTER>
??F <ENTER>
?? 23 LENTER>

47

Now the INPUT operation is done, and the program goes about
its business.

The user can respond to the INPUT statement in a different,
and perhaps simpler, fashion. Instead of doing an ENTER after
typing each variable, it can be done this way:

? JONES,F,23 < ENTER>

Separating the variables by a comma does the same thing as ending
each variable-entry with an ENTER. Here the user does just one
ENTER; and, what’s more important in some graphic formats, the
whole entry operation takes up just one line.

A complete INPUT statement for this example ought to look like
this:

INPUT “LAST NAME, MIDDLE INITIAL, AGE’;NL$,I$,A

This way, everything, including the prompting message, appears on
the same line.

Some Special Applications of INPUT

The INPUT statement is a program stopper. Once the system
encounters an INPUT statement, everything comes to a halt until
the user enters the proper kinds of variables and at least one ENTER
keystroke. It is possible to take advantage of the program-stopping
feature, using INPUT as a control operation rather than a data-
entry operation.

Suppose you have a program that prints out a very long list of
data—a list containing more lines than the video display can ac-
commodate at one time. The real problem is that the user probably
cannot read and interpret the information as it scrolls up the screen
so rapidly.

There are a couple of ways to handle this sort of situation, both
using the INPUT statement. To see how they work, suppose you
want to inspect the content of addresses 0 through 1023 in your
TRS-80 ROM. That represents a lot of lines of information, but
here are some programs for doing the job.

10 CiS

20 A=0

30 PRINT A,PEEK(A)

40 A=A-+1

50 IF A>1023 THEN END
60 GOTO 30

This program will print out the addresses and data for ROM loca-
tions 0 through 1023, but too quickly to be meaningful. So you
might try this:

48

10 CLS

20 A=0

30 INPUT S$

40 PRINT A,PEEK(A)

50 A=A-+1

60 IF A>1023 THEN END
70 GOTO 30

In this program the system does not print out the next line of in-
formation (address and data) until you strike a key on the key-
board. The INPUT statement in line 30 brings everything to a halt
until a string variable is entered. It makes no difference what that
variable is, because it is not used anywhere else in the program.

The point is that an INPUT statement used in this way lets you
display the text one line at a time, giving you plenty of time to
inspect the data on the screen. To make the display look a little
neater, try putting a semicolon at the end of the PRINT statement
in line 40. That way, the information appears on successive lines,
and not on alternate ones.

Another way to handle the situation is to let the screen fill with
15 lines of text before the program calls for a keystroke to show
the next 15 lines. Try this:

10 A=0

20 CIs

30 FOR L=1 TO 15

40 PRINT A,PEEK(A)

50 A=A+1

60 IF A>1023 THEN END
70 NEXT L

80 INPUT S$

90 GOTO 20

Now the FOR ... NEXT loop between lines 30 and 70 prints 15
lines of information before the INPUT statement in line 80 brings
the action to a halt. At that point you can inspect the data at your
leisure and then strike any key to view the next 15 addresses.

As nice as the INPUT statement might be in many instances, the
fact that it interrupts the program can be a real nuisance in other
kinds of situations. That’s where the INKEY$ statement comes
into play.

THE STANDARD INKEY$ STATEMENT

The INKEY$ statement causes the computer to scan the key-
board, detecting any keystroke that might occur during the scan-
ning, or strobing, interval. And using a BASIC statement such as
C$=INKEYS, a string version of the key that is depressed will be
assigned to that string variable, C$.

49

The nice thing about INKEY$, compared with INPUT, is that
INKEY$ does not necessarily interrupt the execution of the program.
It sidetracks the program during the keyboard-strobing interval, but
it doesn’t have to bring everything to a halt as the INPUT state-
ment does.

Used as intended, INKEY$ can be a useful and powerful BASIC
statement. Some programmers, however, attempt to use INKEY$
outside its intended realm, and they get into trouble as a result.
Perhaps that accounts for some of the nasty comments that writers
sometimes publish about the TRS-80 INKEY$ function.

One of the first things to bear in mind about INKEY$ is that it is
a string-related statement. An ever-present reminder of that fact
is the presence of the dollar-sign symbol at the end of the expression.
Getting numerical values into the system via an INKEY$ function
calls for an accompanying VAL(string) statement.

Another important feature is that INKEY$ allows the entry of
just one character at a time. Inputting multiple-character values
into the system via INKEY$ calls for executing the statement more
than one time and assembling the individual characters as ap-
propriate.

Finally, the system executes the keyboard strobing operation in
a very short period, and any program calling for doing a single
keystroke during that strobing interval is bound to cause some
trouble—making it necessary to tap the key an undetermined num-
ber of times before the keystroke and strobe happen to take place
simultaneously.

Programmers who neglect any of these three basic notions about
INKEY$ find themselves having some problems with it. Others,
who understand these notions, can use the statement quite ef-
fectively.

Dealing With the Siring Nature of INKEY$

Here is a continuous, integer-counting program that uses an
INKEY$ function to adjust the time delay between successive
counts—without having to interrupt the execution of the program:

10 CLS

20 N=0

30 C$=INKEY$:\F C$=""" THEN 50
40 C=VAL(C$)

50 FOR T=0 TO 10k C:NEXT T

60 PRINT N

70 N=N-+1

80 GOTO 30

The statements in line 50 generate the time delay between
counts, and you can see that the delay interval depends on the

50

numerical value of variable C. The larger is the value of C, the
longer the delay between successive counts.

The value of C is determined by the statements in lines 30 and 40.
Line 30 uses an INKEY$ statement to pick up a character (a string
character) from the keyboard. If that character happens to be a
null string (no key depressed), the program jumps down to line 50,
allowing no change in the value of C. But if INKEY$ turns up a
numerical string character (0 through 9), the statement in line 40
converts it to a numerical quantity. That value has to be converted
to a numerical quantity so that it can be mathematically manipulated
in the time-delay loop, line 50.

The main point of this illustration is to show that it is necessary
to convert a string-related INKEY$ variable into a numerical value
before it can be treated as a number. Any single-digit number can
be inserted into an ongoing program this way, and there is no
interruption of the kind that characterizes an INPUT statement.

Beginning programmers sometimes get into trouble with the idea
because they forget to account for the null-string condition; they
forget the conditional statement in the second part of line 30, Hack
off the second statement in line 30, and you will not see the pro-
gram running as it is supposed to run.

Now, here is another counting program that uses the INKEY$
statement to adjust the direction of count. Once the program is
operational, you can strike the F key to count forward, the R key
to count in reverse, the S key to stop and hold the current count,
and the X key to reset the count to zero and stop it. A rather straight-
forward decoding sequence translates the INKEY$ string characters
into counting-interval numbers.

20 N=0:1=0

30 C$=INKEY$:IF C$=""" THEN 80
40 IF C$="F" THEN I=1

50 IF C$="R" THEN I= —1

60 IF C$="S"” THEN 1=0

70 IF C$="X" THEN 20

80 PRINT @ O,USING “H ## #:N
90 N=N-+I

100 GOTO 30

In the next example the INKEY$-input string characters are con-
verted into their ASCII codes before they are decoded as counting
direction/speed parameters. The ASC function in line 35 converts
a valid INKEY$ character into ASCII form, and lines 40 through
75 set up the counting parameters—the I variable takes care of the
direction of count, and variable D sets the delay between successive
counts.

51

10 CIs

20 N=0:1=0:D=0

30 C$=$INKEY$:AF C$="" THEN 80
35 C=ASC(C$)

40 IF C=70 OR C=102 THEN {=1
50 IF C=82 OR C=114 THEN |=—1
60 IF C=83 OR C=115 THEN I=0
70 IF C=88 OR C=120 THEN 20

75 IF C<C95 THEN D=0 ELSE D==100
80 PRINT @ O,USING “# ###N
85 FOR T=0 TO D:NEXT T

90 N=N-+I

100 GOTO 30

The program takes advantage of the fact that the ASCII codes for
uppercase and lowercase characters are different. As far as the
alphabetical characters are concerned, the lowercase versions are
separated by their uppercase counterparts by decimal 32. Conse-
quently, line 40, for example, is sensitive to ASCII 70 (uppercase F)
or ASCII 102 (lowercase F).

So you can control the direction of count by striking the F or R
keys (for forward and reverse, respectively). As in the previous
example, striking the S key (ASCII 83 or 115) stops and holds the
current count, and striking the X key (ASCII 88 or 120) stops the
count and resets it to zero.

In any event the conditional statement in line 75 is sensitive
to lowercase characters—those entered while the SHIFT key is de-
pressed. That being the case, variable D is set to 100, and this
inserts a noticeable time delay in the counting operation at line 85.
Otherwise, the count runs at full speed.

It is also possible to write routines that convert INKEY$-entered
keystrokes into screen-control operations. You are free to assign
single-character control codes as you choose. Look at this example:

10 C$=INKEY$:IF C$="'" THEN RETURN <to calling program™>
20 C=ASC(C$)

30 IF C=96 THEN DT=8

40 IF C=97 THEN DT=31

50 IF C=100 THEN 70

&0 PRINT DT;:RETURN <to calling program>
70 PRINT CHR$(28);CHR$(31);
80 RETURN <to calling program>

This routine, written as a subroutine that is called by some mainline
program, allows the user to strike the <SHIFT> B key to backspace
and erase the current character on the screen (line 30), strike the
<SHIFT>C key to clear the screen to the end of the frame (line
40), and strike the <SHIFT>N key to home the cursor and clear
the entire screen (lines 50 and 70). The routine can be expanded

52

to cover all sorts of control functions, all specified by single key-
strokes dreamed up by the programmer.

Putting Together Multiple-Character Values From INKEY$

One of the not-so-nice features of the INKEY$ statement is that
it permits the entry of just one keyboard character at a time. Single-
character INKEYS$ inputs can be quite useful, as demonstrated in
the previous discussion, but there are instances where it is more
desirable and, perhaps, absolutely necessary to input variable values
having more than one character. This is a bit troublesome when
using the INKEY$ function, but it often beats the program-stopping
feature of an INPUT statement.

It is somewhat easier to enter multiple-character string values via
INKEY$ than it is to enter multiple-digit numerical values; so let’s
consider the easier part first,

The following program uses the INKEY$ function to build up a
string value, W$, from individual keystrokes. The characters are
entered one at a time and then assembled (concatenated) to build
a single multiple-character string. The string is limited to five char-
acters, and it will truncate the string beyond that point. Limiting
the string to five characters is an arbitrary choice, however; the string
can be as long as desired.

There are a couple of special features built into this program that
are incidental to the main point of the discussion. While these
“whistles and bells” add to the complexity of the program, they
help make a convincing case for the overall usefulness of the main
idea—inputting multiple-character strings from INKEY$ statements.

10 REM 3k INKEY$ STRING DEMO 3k %k

20 CLS:LN=O0:PRINT @ 50,”#"

30 GOSuUB 100

40 REM (PUT YOUR REGULAR PROGRAMMING HERE)
50 IF LN>>15 THEN 20

60 GOTO 30

70 REM

80 REM

100 REM >k sk INKEY$ INPUT SUBROUTINE 3k
110 C3=INKEY$:IF C$="" THEN RETURN

120 C=ASC(C$)

130 IF C=8 THEN 180

140 IF C=13 THEN 200

150 IF LEN(W$)>=5 THEN 170

160 W$=W$+C$

170 PRINT @ 50, #" +W$;:RETURN

180 FOR CP=50 TO 55:PRINT @ CP,CHR$(32);:NEXT CP
190 W$="""PRINT @ 50,”#";:RETURN
200 PRINT @ O-LNk64,W$;

210 LN=LN-+1
220 GOTO 180

53

On running this program, you will see a pound sign symbol near the
right end of the top line on the screen. This is one of those “whistles-
and-bells” features; it is a homebrewed prompt symbol for entering
the string characters.

Now, type up to five alphanumerics—combinations of letters and
numbers. If you don’t like the string that is being built up to the
right of the pound sign, strike the left-arrow key (<) to clear it.
This clearing operation is another one of those optional features
that are built into the program.

When you are satisfied with the appearance of your multiple-
character string entry, strike the ENTER key. That operation clears
your entry, resets the pound-sign cursor and, more importantly,
prints your entry as a single string “message” at the left-hand side
of the screen.

Now you can type in and ENTER another string of characters.
As you do that, the list of strings builds downward along the left
side of the screen. When the list reaches the bottom of the screen
(after entering 15 strings), the list clears and begins again from
the top.

The main point of the demonstration is that you can, indeed,
enter multiple-character strings with the INKEY$ function. Now
it is time to dig into the program and see how the job is done.

The program is written with the keyboard-entry operations re-
siding as a subroutine, beginning at line 100. The mainline program
(the one that calls the INKEY$-input subroutine) occupies lines
10 through 80.

After initializing the line counter (LN), clearing the screen, and
printing the initial # prompt symbol, the mainline program calls

_the INKEY$ subroutine at line 30. If you had some additional pro-
gramming that called for in-line interaction with your input ex-
pressions, it would fit between lines 30 and 50.

Basically, the mainline program loops endlessly between lines
30 and 60, calling the INKEY$ subroutine and doing any program
operations you might enter in the area of line 40.

Turning to the subroutine itself, notice that the INKEY$ char-
acters are carried as variable C$. The C$ variable represents the
single-character input. In line 160 this character is concatenated
with string W$. This is the point where the individual INKEY$
characters are assembled into a single multiple-character string.
In fact, that is the critical operation—the point of the demonstration.
The rest is intended to make things run smoother for the operator.

The statement in line 120, for instance, converts the INKEY$
input into an ASCII code number. And if C=8 (left-arrow key code),
the program jumps to line 180, where the entry is cleared from the
screen, W$ is nulled, and the pound-sign prompt symbol is replaced

54

on the screen. This simply means that striking the left-arrow key
erases the current entry, making it possible to correct any typing
errors.

If C=13 in line 140, it means the user has hit the ENTER key.
The response in that instance is determined by operations beginning
at line 200. Those operations print the assembled string, W$, on
the next line of text along the left side of the screen, increment the
line counter (LN), and go back to 180 to erase the entry version
of the string.

This notion of concatenating single-keystroke characters from
INKEYS$ to make multiple-character strings can lead to some power-
ful in-line keyboard operations. It allows you to make up multiple-
character control expressions that can influence the ongoing ac-
tivity. Try this program, making just a few additions to the original
version (lines 52, 53, and 55).

10 REM sk INKEY$ STRING DEMO * %k

20 CLS:LN=O0:PRINT @ 50,“#"

30 GOSUB 100

40 REM (PUT YOUR REGULAR PROGRAMMING HERE)
50 IF LN>15 THEN 20

52 IF W$="DONE"” THEN END

53 IF W$<>"CLEAR” THEN 60

55 W$="":GOTO 20

60 GOTO 30

70 REM

80 REM

100 REM sk INKEY$ INPUT SUBROUTINE
110 C$=INKEY$:IF C$="" THEN RETURN

120 C=ASC(C$)

130 IF C=8 THEN 180

140 IF C=13 THEN 200

150 IF LEN(W$)>=5 THEN 170

160 W§=W$-+C$

170 PRINT @ 50, #" +W$;:RETURN

180 FOR CP=50 TO 55:PRINT @ CP,CHR$(32);:NEXT CP
190 W$=""PRINT @ 50,"#";:RETURN

200 PRINT @ O+LN*64,W$;

210 LN=LN-+1

220 GOTO 180

Now the program is uniquely sensitive to the strings DONE and
CLEAR. On entering DONE, the program immediately ends. En-
tering CLEAR clears the accumulated lines of text and starts every-
thing from scratch.

This technique ought to suggest some intriguing program-control
formats and, indeed, the possibility of making up custom program-
ming languages—interactive ones, at that.

Inputting multiple-digit numerical values via INKEY$ follows
the same general scheme. The point of departure is where the string

55

version is converted into decimal numbers, and that calls for some
math operations. See lines 200 through 230.

10 REM 3k k INKEY$—ENTERED NUMBERS >k
20 CLS:LN=O0:PRINT @ 50,"#"

30 GOSUB 100

.40 REM (PUT YOUR REGULAR PROGRAMMING HERE)
50 IF LN>>15 THEN 20

60 GOTO 30

70 REM

80 REM

100 REM skk INKEY$ INPUT SUBROUTINE 3k 3k
110 C$=INKEY$:IF C$="" THEN RETURN

120 C=ASC(C$)

130 IF C=8 THEN 180

140 IF C==13 THEN 200

145 IF C<48 OR C>>57 THEN RETURN

150 IF LEN(W$)>=5 THEN 170

160 W$=W$+C$

170 PRINT @ 50,”#* -+ W$;:RETURN

180 FOR CP=50 TO 55:PRINT @ CP,CHR$(32);:NEXT CP
190 W$=""PRINT @ 50,”#";:RETURN

200 W=0

210 FOR CP=LEN(W$)—1 TO 0 STEP—1

220 W=W +VALMID$(W$,LEN(W$) — CP,1)) %k T0[(CP)
225 NEXT CP

230 PRINT @ O-+IN*¥64,W;

240 LN=LN-+1

250 GOTO 180

The program develops string W$ as before, but it is no longer
enough to simply concatenate the new keystrokes to get the final
result—the finished string has to be converted into a legitimate
decimal format.

The decimal version of the number is first set to 0 at line 200.
Variable W is the current decimal value of the number. Line 210
picks up the number of characters in the number and, one at a
time, assigns them a power-of-10 value that is appropriate to their
place in the numeric expression. By the time the program gets to
line 230, W is equal to the number entered from the keyboard. It
is a true numerical value, as suggested by the fact it is PRINTed as
a numerical, rather than a string, variable.

A further modification in line 145 prevents the operator from
entering nonnumerical figures.

As you might imagine by now, this technique can be useful for
entering the values of numerical variables while some program is
running. You can, for instance, change the parameters in a graphing
program while the graph, itself, is being generated.

It is very difficult to imagine a more powerful interactive program-
ming technique in BASIC. The INKEY$ statement is perhaps the

56

most powerful interactive tool in BASIC, but one of the most
maligned. It’s too bad so many programmers miss the opportunity
to use it.

The Loop Requirement for INKEY$

An INKEY$ statement must be placed within a looping operation.
If you inspect all the programs suggested thus far for the INKEY$
statement, you will find it is in a loop of some sort.

INKEY$ must be placed into a loop to make its operation re-
liable. The keyboard strobing operation that is called by an INKEY$
statement runs so quickly that there is very little chance a key-
stroke will occur at the precise instant INKEY$ is scanning the
keyboard.

Here is an example of a very tight INKEY$ loop:

10 C$=INKEY$:IF C$="" THEN 10

In this instance the program “buzzes” on line 10 until a keystroke
occurs. It is the same thing as inserting an INPUT statement into
a program. The program effectively comes to a halt until the system
senses a keystroke.

SENSING KEY DEPRESSION WITH PEEK(14463)

While INPUT and INKEY$ serve most keyboard input functions
quite nicely in BASIC, there are a couple of useful operations that
are foreign to those two statements. Some of those operations can
be utilized by working with the so-called keyboard memory.

The keyboard memory is a section of the memory map, between
14336 and 15359, inclusively. One of these addresses that is of
particular importance is 14463. That address location carries data
zero unless one or more keys are depressed. Set up this simple
demonstration program, and try things for yourself:

10 CLS

20 C=PEEK(14463)
30 PRINT C;

40 GOTO 20

When you start this program, you will see strings of zeros being
printed across the screen—until you depress a key. The moment
you depress a character key (some control keys do not affect 14463),
you will see some number other than zero being printed.

What is of special interest here is the fact that the program con-
tinues printing those numbers as long as the key is depressed. By
contrast, the INPUT and INKEY$ statements are “stroke” operated.
Unless your system is suffering from keybounce, INPUT and

57

INKEY$ are one-shot operations; they can tell a key has been de-
pressed, but the duration of a key depression is not relevant.

So a PEEK (14463) gives you a control function that is not de-
scribed in the standard TRS-80 literature. In effect, the entire key-
board becomes a set of normally open push-button switches. Try
this:

10 CIS

20 C=PEEK(14463)
30 IF C=0 THEN 20
40 PRINT CHR$(191);
50 GOTO 20

This little routine draws a white bar as long as a key is depressed.
Release the key, and the drawing stops. Tt isn’t quite so easy to do
such a thing with a togglelike INKEY$ statement. This kind of
routine is invaluable whenever you want some action to take place
while a key is depressed.

There are some other features of PEEK(14463) that could prove
useful as well. Whenever you do a PRINT PEEK(14463) and de-
press a single key, you see one of the following numbers: 1, 2, 4,8,
16, 32, 64, or 128. Several different keys produce the same number
in this particular family of numbers. PEEK(14463) turns up a 2,
for example, whenever you depress A, I, Q, Y, or 2. On the other
hand, it turns up a 4 whenever you depress B, J, R, Z, or 3. Table 3-1
summarizes the content of address 14463 for all of the useful key
functions.

The code numbers picked up at address 14463 can be decoded
and used for specific control applications. Suppose, for example,
you want to move a “paddle” figure up and down on the screen, in
response to depressions of the up-arrow or down-arrow keys. De-
pressing the up-arrow key ought to make the figure move up the

Table 3-1. Decimal Content of Address 14463 While a
Specified Key Is Depressed

Contents of 14463 Key Depressed

0 (No key depressed)
1 @ H P X O (8 ENTER
2 A1l @ Y I 1) 9 CLEAR
4 B J R Z " 2 % : BREAK
8 cC K § # 3 4+ ;1

16 D LT $ 4 < , 1

32 EMU % 5§ = — <«

64 F NV & 6 > . =

128 G O W ‘' 7 ? [/ SPACE

NOTE: <SHIFT> @ produces a 1 on alternate key depressions. An alphabetical character with
SHIFT produces the same value as its non-SHIFT version.

58

screen, and depressing the down-arrow key should make the figure
move downward.

The basic idea in this case is to PEEK(14463) and take ap-
propriate action if that PEEK turns up an 8 (up-arrow depression)
or a 16 (down-arrow depression). The following example is be-
coming a classic demonstration for the PEEK (14463) operation:

10 BL=15360:TL=16383:P= 15557

20 CLS:POKE P,191

30 M=PEEK(14463):IF NOT(M=8 OR M=16) THEN 30

40 IF M=8 THEN PT=P—64 ELSE PT=P+64

50 IF PT<BL OR PT>>TL THEN 30

60 POKE P,32

70 P=PT:POKE P,191

80 GOTO 30

Line 30 looks at address 14463 and loops around on that same line
until it turns up a value of 8 or 16. At that time line 40 sets the next
position for the paddle figure, and line 50 checks for the possibility
of running the figure out of video memory range.

Line 60 then erases the old paddle position (replacing it with a
space), line 70 draws the figure in its new position, and line 80 loops
the whole program back up to line 30, where it looks for the key
depression again.

So depressing the up-arrow key develops an 8 at address 14463,
and depressing the down-arrow key develops a 16. You will find,
however, that some other keys work equally well with the paddle
demonstration program. From Table 3-1 you will find a lot of other
keys generating 8s and 16s. Those will cause the same action as the
up-arrow and down-arrow keys.

The basic problem is that the key-depression sensing activity of
address 14463 does not completely decode the keyboard. Rather,
it decodes the keys into eight groups. Coupling a PEEK (14463)
with an INKEY$ statement, however, lets you reap the benefits of
both: sensing continuous key depression with PEEK(14463) and
completely decoding the character code with INKEYS.

So here is a demonstration program that works as a REPEAT
KEY operation. Depress any key listed in Table 3-1, and you will
find it being repeatedly written on the screen as long as that key is
depressed. The program is fun if you first fill the screen with arbi-
trary characters, and then “edit” the display by means of the cursor
controls (working the arrow keys while depressing SHIFT).

10 CLS:PRINT CHR$(14);

20 IF PEEK(14463)=0 THEN 20
30 C$=INKEY$

40 IF C$<C>" THEN R$=C$
50 PRINT R$;

60 GOTO 20

59

In this program, line 10 clears the screen and turns on the cursor.
Line 20 looks for a key depression—any key depression. That is half
the job. On detecting a key depression, the INKEY$ statement in
line 30 decodes the key, and line 40 sets the value of R$ so that
the program continues drawing that same character long after the
INKEY$ function has reset itself. The program, in other words, con-
tinues generating the R$ character as long as its key is depressed.

The keyboard can thus be completely decoded and yet respond
in a push-button fashion that is lacking in either the INKEY$ or
INPUT functions, alone.

The PEEK (14463) operation has one more special feature that
can prove useful. Table 3-1 indicates the tontent of address 14463
whenever one key is depressed. But when you depress more than
one key at a time, address 14463 tends to show the sum of the
basic key codes. Normally, depressing the A key turns up a 2 in
address 14463, and depressing the B key generates a value of 4 in
that location. Depress both of those keys at the same time, however,
and you will find a value of 6 in address 14463. Depress A, B and C,
and you will find 2+4+8, or 14, in that address.

So, by depressing more than one key at a time, address 14463
shows the sum of the individual key-depression codes—all the way
up to 255 (you cannot get a number larger than 255, no matter how
many keys you depress). That leads to some potential applications:
setting the speed of an animated figure by depressing more than
one control key simultaneously, for instance.

SUMMARY

PEEK (14463) will return an integer between 1 and 255 as long as any
key, or combination of keys, is depressed.

Table 3-1 shows the content of address 14463 when one key is depressed.
Depressing more than one key returns the sum of those numbers, up to 255.

WORKING WITH THE KEYBOARD MATRIX

The TRS-80 keyboard is set up with an 8x8-key format. It at
least has the potential for working with eight columns of keys, each
having eight keys in them. Not all the rows are filled, however.
See Fig. 3-1.

When your TRS-80 is in its command mode of operation some
ROM programming routinely scans, or strobes, the keyboard, look-
ing for a possible key depression. And while a program is running
in BASIC, the INPUT and INKEY$ functions also call for a key-
board-strobe operation.

60

14338

e OOOOOOOO
OOOOOOO
OOOOOOO

14340

]

2

2

E 14352 e 0

o«

La 14464
1 2 4 8 16 32 64 128
} COLUMN DATA !

(READ ONLY)

Fig. 3-1. The TRS-80 keyboard matrix (decimal format).

The system, in either case, scans the keyboard one row at a time.
If a key in a given row is depressed, the system generates a code
number representing that key. This is how the scheme works in a
general sense,

The system PEEKs at the row addresses, in sequence and one at
a time. Each PEEK returns a zero (if no key is depressed in that
row) or a number representing the key that is depressed in that row.

Referring to Fig. 3-1, suppose that you are depressing the A key
when the strobing action begins. When the system does a machine-
language version of PEEK (14337) it will find a 2 in that location.
All subsequent row addresses will turn up zeros. As another ex-
ample, you might be depressing the P key. This being the case,
PEEKSs at 14337 and 14338 (addresses of the first two rows) will
turn up zeros, but the system will find a 1 when it does a PEEK
(14340)—the first bit in the third row.

Now, this strobing scheme can turn up key data that is the same
for a number of different keys. The numbers in this case are

61

identical with those listed in Table 3-1. The system keeps everything
straight, however, by keeping track of which row is being addressed
at the moment. A and I keys both turn up a 2, but the system will
see that 2 in row address 14337 only when the A key is depressed,
and it will see the 2 in row address 14338 only when the B key is
depressed.

To test your understanding of this idea, see if you can answer this
question: Which key is being depressed if a 64 turns up in row
address 143407 Answer: The V key is being depressed.

The machine-language keyboard strobing/decoding routine goes
through the same procedure you used to answer that question. The
strobing routine runs through all eight row addresses, whether it
finds some data along the way or not. This is important because
the two SHIFT keys generate a 1 at address 14464 whenever one
of them is depressed. So if you are doing a SHIFT while holding
down the A key, the system finds a 2 at address 14337 and a 1 at
address 14464. If the SHIFT key is not depressed, address 14337
holds a 0.

The following program lets you interrogate the keyboard matrix.
It is essentially a BASIC version of the ROM-based keyboard
strobing operation.

10 REM >k KEYBOARD MATRIX DEMO 3
20 IF PEEK(14463)=0 THEN 20

30 cis

40 A=14337:PRINT APEEK(A)

50 FOR N=0 7O 6

60 P=21N

70 A=A-+P:PRINT APEEK(A)

80 NEXT N

90 IF PEEK(14463)< >0 THEN 90

100 GOTO 20

Run the program, then depress a key. The program then scans
the keyboard and prints the row addresses and corresponding data
as it goes along. Depress the keys in any sequence you choose,
including some while the SHIFT key is depressed. Just make sure
you hold down the key until the display is completely generated.
What you observe on the screen should line up with the information
you can glean from Fig, 3-1.

Try depressing more than one key at a time, and see if you can
figure out why the display responds the way it does. Compare the
results with the discussion of the PEEK(14463) operation in the
previous section of this chapter.

Incidentally, you will note from Fig. 3-1 that the row addresses
grow successively larger, but the intervals between them are not
identical. The row addressing follows a binary/hexadecimal se-

62

quence; thus there appears to be a lot of wasted “memory space”
between row addresses 14400 and 14464.

The row addresses shown in Fig. 3-1 are necessary for addressing
just one row at a time. If you PEEK any address between a pair of
those row addresses, you are going to address more than one row
at a time.

If you do a PEEK(14339), for example, you will address rows
14337 and 14338 at the same time. The result will be the sum of
whatever keys might be depressed in those two rows. And what do
you suppose happens if you do a PEEK(14463)? This addresses
all rows (except the SHIFT row) at the same time, and that is a
special case you have already studied in the previous section of
this chapter,

Under normal operating conditions the keyboard routine has
two phases: it first strobes the keyboard as described here, and then
it decodes the information to generate a unique ASCII code for
the key being depressed. The decoding is done in ROM, but it is
difficult to get at that decoding routine from BASIC. You will be
able to access the key-decoding routine rather easily from machine-
language programs, thus saving yourself a lot of needless program-
ming—programming aimed at decoding the keyboard.

63

CHAPTER 4

The User's Memory Environment

Every TRS-80 system has a certain memory capacity: 4K, 16K,
39K, or 48K. These figures refer to the amount of RAM space—the
number of bytes—available for working BASIC programs or any
other kind of memory operations.

In all cases the RAM available to the user begins at address
17129. The top address, however, depends on the system’s memory
capacity. See Table 4-1.

Table 4-1. User's Available RAM Space

System Capacity Lowest Address Highest Address
4K 17129 20479
16K 17129 32767
32K 17129 49151
48K 17129 65535

If you figure the difference between the lowest address and the
highest address in Table 4-1, you won’t come up with the number
representing system capacity. These extremes indicate the range
of RAM addresses that are available for user’s programs.

The RAM space actually begins at 16384 in all Level II machines.
The memory space between 16384 and 17129 is devoted to internal
operations: restart vectors 1-7, device control blocks, the i/o buffer,
and so on. See any of the memory maps supplied by Radio Shack
for details.

Some of the demonstrations in Chapters 2 and 3 involved working
in that lower part of the RAM space. The real working memory,
however, begins at 17129, and that’s the starting place for the dis-
cussions in this chapter.

64

The first part of the chapter looks into the i/o buffer and shows
how BASIC statements are assembled in the user’s memory space.
The second part deals with the matter of the so-called protected
memory-a section of the user’s memory that is set aside for special
applications through the MEMORY SIZE? entry routine,

ORGANIZATION OF THE USER'S MEMORY SPACE

Fig. 4-1 is a general memory map of the memory space available
for writing and executing programs. The range of this memory
space is clearly defined for every machine, but the space devoted
to the various categories of information stored there is not.

To be sure, BASIC program text always begins at address 17129
and builds upward from there. Program text is an almost-literal
listing of a BASIC program; so the longer the program is, the farther
it builds up into the user’s memory space.

HIGHEST AVAILABLE
RAM ADDRESS >
(SEE TABLE 4-1) OPTIONAL
ADDRESS PROTECTED MEMORY
SPECIFIED IN >
RESPONSE T0
MEMORY SIZE? STRING SPACE
QUERY
l STACK
FREE MEMORY
STRING
VARIABLE NAMES
ARRAYS
SIMPLE VARIABLES
BASIC
PROGRAM TEXT
17129 ~—2-

BEGINNING OF USER'S RAM SPACE
Fig. 4-1. Memory map for BASIC programs.

65

But there’s more in the user’s memory space than the program
text. As the BASIC program is entered and executed, simple vari-
ables, arrays, and string variable names are appended to the top of
the BASIC program text. A memory map cannot specify the starting
address of simple variables, for example, because that address varies
with the size of the program text. The same is true for the array and
variable-name addresses.

The best we can do is illustrate their relative positions on the
memory map.

There is also some of this dynamic sort of memory space allocated
for strings and a stack. (The stack is responsible for keeping track
of things while a BASIC program is running nested arithmetic, logic,
and GOSUB routines.) These two memory spaces are not appended
to the others, however. As indicated in Fig. 4-1, string space and
stack begin at a high address and build downward. The more com-
plex the string and stack operations become, the farther they grow
down toward the lower end of the user’s RAM space.

Incidentally, the starting address for the string-space allocation
depends on the computer’s memory capacity and any reply the
user might make to the MEMORY SIZE? query. There’s much more
to say about that later in this chapter.

The main point of the present discussion is that during the entry
and execution of a BASIC program, some of the program elements
load upward into the user'’s memory space, and some begin at the
top and grow downward.

It figures, then, that there is a no-man’s land in between. This
is the user’s memory space that is commonly called free memory.
There’s no telling exactly where that free memory is located; all
we know for sure is that it stands between the upward-growing
variable-name space and downward-growing stack.

Even though it is pointless to figure the exact location of the free
memory, you can always determine how large it is—how many bytes
of memory are left in that space. To do this, simply ENTER a PRINT
MEM. That’s the purpose of the MEM statement.

The term “free memory” isn’t really a misnomer, but it is often
misunderstood. It must not be interpreted as a section of memory
you are free to use as you wish; it is a bad idea to tinker around
in the free memory. It isn’t free in the sense that you are free to
use it for your own purposes (the protected memory plays that
role for you). Rather, its size indicates how much memory remains
for entering and executing BASIC programs.

As the program text and stack grow, they decrease the free
memory space. And that amount of free memory doesn’t necessarily
remain constant after a program is fully entered. It can vary during
the execution of a program, especially if that program has a lot of

66

stack-related operations—nested math and logic operations or nested
GOSUBs. Try this little demonstration program:

10 PRINT MEM

20 GOSUB 40

30 PRINT MEM:END
40 GOSUB 60

50 PRINT MEM:RETURN
60 GOSUB 80

70 PRINT MEM:RETURN
80 GOSUB 100

90 PRINT MEM:RETURN
100 PRINT MEM:RETURN

This program contains a number of nested subroutines, and each
one of them prints out the amount of available free memory. You
will see very clearly that the size of the free memory space changes
during the execution of a stack-related program.

The practical significance of this demonstration becomes apparent
when writing very long and complicated BASIC programs—pro-
grams that occupy nearly all available memory space. When you are
through entering the program and do a PRINT MEM to check on the
amount of free memory still available, you might get a comfortable
figure. That can lull you into thinking that you did, indeed, manage
to get that nasty program into your available memory. But then
you might get a rude awakening to stack operations when you try
running the program, and the stack space collides with the variable-
names space—the program crashes for a lack of available memory.

Understanding the significance of the free memory space, and
making certain that a long program leaves a generous amount of it
can save some real disappointments.

The “protected memory” is an optional part of the user’s memory
space. It is always situated at the very top of the available RAM
space, beginning from an address specified during the MEMORY
SIZE? power-up routine. If you respond to that power-up query
by simply striking the ENTER key, there will be no reserved mem-
ory, and the string space and stack will grow downward from the
highest available RAM address—addresses specified for you in
Table 4-1.

But if you respond to MEMORY SIZE? with a valid RAM address,
the string and stack spaces will begin building downward from that
address; all available memory above that point will be reserved for
things such as machine-language programs and any other memory
tinkering you may want to do.

After running through the previous discussion of the free mem-
ory space, you ought to see the value in reserving as little protected

67

memory as possible. If you are overly generous and protect too
much memory, you will leave little space for entering and executing
programs in BASIC. In effect, every byte you reserve for protected
memory steals a byte from the free memory; and we have already
discussed what can happen when the system runs out of free
Memory.

In actual practice, however, a programmer rarely runs out of free
memory because he or she has reserved some protected memory
space. Usually, the purpose of reserving protected memory is to
provide space for machine-language programs. When using machine-
language programs any BASIC programming used in conjunction
with them is generally rather short and unsophisticated. In fact, a
purely machine-language program can occupy the entire user’s
memory space, because there will be none of the memory-gobbling
BASIC operations involved.

A BASIC program will never run into any protected memory for
the simple reason that the built-in BASIC entry and execution
routines never specify addresses larger than the upper string-space
address entered in response to MEMORY SIZE? Of course you can
write BASIC programs that POKE into the protected mémory
space, and we will be doing that in a later section of this chapter.
But the BASIC routines, themselves, never get into that upper-
address area—if it has been specified.

THE §/0 BUFFER

In all Level II systems the i/o buffer occupies RAM addresses
16870 through 17127. All keyboard-entry operations take place
through this memory space. Whenever you are typing in a line of
BASIC programming, for example, it first goes into that buffer, and
it is transferred to the program text space only after you strike the
ENTER key. During the execution of a BASIC program the key-
board response to INPUT, INKEYS$, and any other kinds of in-line
entry operations go to the buffer first.

Strings and lines of BASIC text are limited to 255 characters
because they must pass through the i/o buffer first; the buffer isn’t
much larger than that.

If you want to take a look at the sort of data that goes into the
i/o buffer, try this program from the command mode (do not use
a line number):

A=16870:FOR 1=0 TO 63:PRINT PEEK(A-+1);::NEXT |

As you type in this line of text the information goes into the i/o
buffer; and when you end the operation by striking the ENTER key

68

Chart 4-1. 1/ O Buffer Contents

65 213 49 54 56 55 48 58 129 32 73 213 48 32 189
32 54 51 58 178 32 229 40 65 205 73 41 59 58 135
32 73 0 0

the program displays itself as it appears in the i/o buffer. The re-
sulting display resembles the sequence of numbers in Chart 4-1.

There will be more to your display than shown here, but, as you
will see shortly, anything following a pair of zeros in succession
is irrelevant—it’s just bits and pieces of data left over from previous
i/o operations.

If you compare that string of numbers in Chart 4-1 with an ASCII
character table and the command-level program you entered, you
can see something of a pattern in the whole thing,.

The first number in the i/o listing, for example, is 65. It is no
mere coincidence that 65 is the ASCII code for the letter A and
that the first character in the program is an A. Skip the second
number, 213, for a moment, and look at the third number in the i/o
printout: it's a 49. This is the ASCII code for numeral I—the next
alphanumeric character in the program.

Running through this process on your own, you will find the i/o
buffer containing the ASCII code numbers for all variable names,
constants, and punctuation in the program.

But command words and operators are not represented in an
ASCII form in the i/o buffer. Rather, they are shown as special
compression code numbers. The equal sign, for example, appears as
a 213 everywhere in the i/o buffer. The FOR part of the FOR. ..
NEXT command shows up as a 129.

Variable names and values appear in the i/o buffer in a literal, ASCII
code format.

Command words and arithmetic/logic operators appear in the i/o buffer
as single-number compression codes.

Of course, the point of loading command words and operators
as single-number compression codes is to make more room in the
i/o buffer (and, ultimately, the program memory space) for more
BASIC operations.

Table 4-2 is a complete listing of command words and operators
that have special compression codes. This table will help you “dis-
assemble” the i/o listing in Chart 4-1. Now you should be able to
see how that one-line program appears in the buffer.

69

Table 4-2. Compression Codes for BASIC Commands and Operaiors

Compression Compression Compression
Command Code Command Code Command Code
ABS 217 INKEY$ 201 RND 222
AND 210 INP 219 RSET 172
ASC 246 INPUT 137 RUN 142
ATN 228 INSTR 197 SAVE 173
AUTO 183 INT 216 SET 131
CDBL 241 KILL 170 SGN 7
CHR$ 247 LEFT$ 248 SIN 226
CINT 239 LEN 243 SQR 205
CLEAR 184 LET 140 STEP 204
CLOAD 185 LINE 156 STOP 148
CLOSE 166 LLIST 181 STR$ 244
Cis 132 LOAD 167 STRING$ 196
CMD 133 LOC 234 SYSTEM 174
CONT 179 LOF 235 TAB(188
cOSs 225 LOG 223 TAN 227
CSAVE 186 LPRINT 175 THEN 202
CSNG 240 LSET 171 TIMES 199
Ccvb 232 MEM 200 TO 189
Ccvi 230 MERGE 168 TROFF 151
CVs 231 MID$ 250 TRON 150
DATA 136 MKD$ 238 USING 191
DEF 189 MKI1$ 236 USR 193
DEFDBL 155 MKS$ 237 VAL 255
DEFINT 153 NAME 169 VARPTR 192
DEFSNG 154 NEW 187 -+ 205
DEFSTR 152 NEXT 135 — 206
DELETE 182 NOT 203 3k 207
DIM 138 ON 161 / 208
EDIT 157 OPEN 162 [209
ELSE 149 OR 2n > 212
END 128 ourt 160 = 213
EOF 233 PEEK 229 < 214
ERL 194 POINT 198 & 38
ERR 195 POKE 177 ! 251
ERROR 158 POS 220
EXP 224 PRINT 178
FIELD 163 PUT 165
FIX 242 RANDOM 134
FN 190 READ 139
FOR 129 REM 147
FRE 218 RESET 130
GET 164 RESTORE 144
GOSUB 145 RESUME 159
GOTO 141 RETURN 146
IF 143 RIGHT$ 249

70

“DISASSEMBLING’' A BASIC PROGRAM

When you are writing in a line of BASIC program text the infor-
mation first goes into the i/o buffer, and it accumulates there until
you strike the ENTER key. As explained in the previous discussion
the text in the buffer shows ASCII character codes for all numbers
and variable names, but special compression codes for the commands
and operators.

As shown in the i/o “disassembling” program information in
Chart 4-1, the line ends with a double-zero marker. Those zeros
are added automatically to the end of a line of program text in the
i/o buffer, and they carry over to the program memory as the line
is transferred there.

Here is a program that makes the point:

10 A=17129:FOR 1=0 TO 63:PRINT PEEK(A-1);:NEXT |

This program is very similar to the one used for looking at the
contents of the i/o buffer. There are just two differences. First, this
program is entered with a preceding line number. That line number
has to be present in order to make the transfer from the i/o bufter
to the program text space in the user’s memory. Second, the starting
location for the searching operation is different. Instead of starting
at the beginning of the i/o buffer (A=16870), this one starts at the
beginning of the BASIC program text space (A=17129).

Do a RUN on this program, and you will see the contents of the
first 64 locations in the BASIC program text memory. It should look
like the data in Chart 4-2.

Chart 4-2. Contents of BASIC Program Text Memory Space

14 67 10 0 65 213 49 54 56 55 48 58 129 32 73
213 48 32 189 32 54 51 58 178 32 229 40 465 205
73 41 59 58 135 32 73 0 O

Again, there will be more text on the screen than shown in this
table, but anything past the double-zero point is irrelevant. Now
compare Charts 4-1 and 4-2. They represent the same program,
but the former is pulled from the ifo buffer and the latter as it
appears after being transferred to the BASIC program text space.

The only significant difference between those two printouts is
the presence of 4 extra bytes of information at the beginning of the
program-text version in Chart 4-2. Skip those first four numbers,
and the printouts are identical.

Indeed, the data set up in the i/o buffer is transferred to the
BASIC text memory as ASCII characters and BASIC compression
codes.

n

ALL . ZERO MARKS
BUT LAST | LSB | MSB | LSB | MsB PR?SXRTAM 0 | END OF CURRENT
LINE TEXT LINE
|] !]
| I |
|] |
2 | I
LAST ' DOUBLE ZERO
PROGRAM | LSB | MSB | LSB | msp | TRronnM 0 | 0 | MARKSEND
LINE TEXT OF PROGRAM

\ s\ J

STARTING CURRENT
ADDRESS OF LINE
NEXT LINE NUMBER

Fig. 4-2. BASIC text format.

What are those first 4 bytes in the program text listing? Well, they
represent the program line number and the memory address of the
next program line. Every line of BASIC text stored in the program
memory starts out this way: 2 bytes for the address of the beginning
of the next program line, and 2 bytes indicating the line number
of the current line. See Fig. 4-2.

Interpreting the information in these first 4 bytes of each pro-
gram line is a bit messy, because they are formatted as decimal
versions of 2-byte numbers. So if you are confused by the discussion
that follows, you should consult Appendix A to see the rationale
behind it.

The first 2 bytes in Chart 4-2 indicate the address of the next
line of text in the program. Those numbers are 14, 67. Converting
them to a hexadecimal format, they are OE, 43. Turning them around
so that the msb is in its loading position, the hexadecimal address
of the next program line is 430E. If you don't like working in hex,
this number converts to decimal 17166. So whenever a second line
is added to this program, it will begin at user’s memory address
17166.

Any BASIC program begins at address 17129, and the line under
discussion happens to end at 17165 (remembering that 17166 is the
starting address of the next line). If you take the difference between
the two numbers and add 1, you end up with the number of bytes
that program line occupies in program memory: 37 bytes. Count
the number of bytes in the listing of Chart 4-2, remembering to
exclude the second of the two zeros marking its end. Sure enough,
there are 37 bytes in that line.

Of course the number of bytes in a BASIC program line varies
with the number of characters.and commands you put into it. This
one just happens to use 37 bytes of BASIC program memory.

Perhaps the discussion is getting a bit off the track here. The
main point is that the first 2 bytes of any line of BASIC text that

72

is stored in program memory represent the starting address of the
next line—the actual memory address.

The second 2 bytes reflect the current line number, as indicated in
Fig. 4-2. In this particular case the line number is 10, and that shows
up clearly in the third and fourth bytes of the listing in Chart 4-2.

A program made up of more than one line of text, as most BASIC
programs are, will have a zero at the end of each one, The zero
marks the end of a program line, and that’s what the BASIC com-
piler looks for when executing a BASIC program. The last line of
program text also ends with a zero, but there is a second zero to
mark the end of the program. And that’s how the BASIC interpreter
knows it has reached the end of a program, whether the END state-
ment is used or not.

As noted in an earlier demonstration, every line of text from the
i/o bufler concludes with that double-zero, end-of-program marker.
In a sense the i/o buffer assumes that every line you ENTER is the
last one. But as you ENTER additional lines of program text, the
line just ENTERed begins at the address of the second zero attached
to the end of the previously entered line. So no matter how long or
short your BASIC program might be, single zeros separate the
lines of text in the program memory, and the last-entered line of
text ends with two zeros.

Here is a program that searches the user’s memory and displays
the data for each program line. It ignores any zeros appearing in
the first 4 bytes of each line but begins a new line of printout after
seeing a single zero at the end of a line. The program stops under
two conditions: whenever it sees a double-zero combination that
marks the end of all the programming in the BASIC program text
memory, and when it sees an END command—compression code 128.

If this is the only programming in the BASIC program text mem-
ory, it “disassembles” itself for you, showing you all the BASIC

1000 REM sk BASIC ‘DISASSEMBLER’

1010 CLS

1020 A=17128

1030 FOR B=1 TO 4

1040 A=A+1

1050 PRINT PEEK(A);

1060 NEXT B

1070 A=A+1

1080 PRINT PEEK(A);

1090 IF PEEK(A)=0 AND PEEK(A+1)=0 THEN 1150
1100 IF PEEK(A)=0 THEN 1140

1110 IF PEEK(A)=128 THEN 1130

1120 GOTO 1070

1130 A=A+ 1:PRINT PEEK(A):INPUT $$:GOTO 1030
1140 PRINT:GOTO 1030

1150 PRINT PEEK(A-+1)

73

text information for each line. But if you enter a short BASIC pro-
gram, using line numbers smaller than 1000, you can “disassemble”
that program by doing a RUN 1000. Just be sure to end your custom
program with an END statement. Otherwise the program will run
through itself.

This discussion of how the BASIC program is formatted in the
user’s memory space ought to suggest some utility programs. You
can, for instance, write a program that will search another program,
looking for the occurrence of certain functions or variable names.
The program can list the line numbers for you or count the number
of occurrences.

Probably the most sophisticated and useful utility program is
one that renumbers the BASIC lines for you. While such a program
is beyond the scope of this book, you might be able to see how it
would work. You can write a utility that will search out the line
numbers (the second 2 bytes from the beginning of each line) and
modify them in any way you choose. The tricky part of a renum-
bering utility is keeping track of line-number changes for GOTO,
GOSUB, ON...GOTO, and ON...GOSUB statements. Finding
such statements is easy; just look for their compression codes (Table
4-2), but keeping track of how the line numbers should change is
another matter.

In any event, bear in mind that a BASIC program always begins
loading at address 17129 and builds upward from there.

PROTECTING MEMORY SPACE

The only section of the user's memory space that is available
for any sort of non-BASIC tinkering is the optional protected mem-
ory. The amount of protected memory depends on your response
to the system’s MEMORY SIZE? query at power-up. The number
ENTERed at that time sets the lowest available address for the
protected memory, and it runs from that point to the highest mem-
ory address available on your system. See Table 4-1 for those top
addresses.

As an example, suppose you want to save 1024 bytes (1K) for
protected memory. If you have a 16K system, subtracting 1024
from 32767 yields the lowest address of the protected memory:
31743. Respond to the MEMORY SIZE? query by entering 31743,
and you will have 1024 bytes reserved for your own memory opera-
tions; a space running from address 31743 to 32767.

There are occasions when it is necessary to save more than one
block of protected memory. A user, for instance, might want 512
bytes for one kind of job, 64 for another, and maybe 1024 for yet
another application. The MEMORY SIZE? query allows only one

74

SA=MA—-BS

where

SA = the starting address of the protected memory space,
MA = the highest memory address available (Table 4-1),
BS = the number of bytes to be protected.

response. What will it be? Simply add up the byte sizes for the
individual blocks, and subtract the results from the highest available
address. In this case the total amount of protected memory re-
quired is 512-+64-+1024=1600 bytes. If the system has a 16K mem-
ory, 32767—1600=32167 gives the starting address of the protected
memory space. That’s the number to ENTER in response to MEM-
ORY SIZE?

The same situation sometimes arises in a different light. The
writer’s line-printer system, for example, operates from a machine-
language driver program. That program must be entered into the
system before it will respond to LPRINT and LLIST commands.
Now, the literature supplied with that software driver calls for re-
sponding to MEMORY SIZE? by entering 32512. Apparently that
is the starting address of the driver routine in the protected mem-
ory space.

But for the sake of doing some special experiments with protected
memory, I have to set aside some additional space, say 1024 bytes.
Remembering that I cannot use any addresses from 32512 and up,
the additional protected memory cannot have addresses exceeding
32511—otherwise my memory tinkering might mess up the line-
printer program. So with 32511 being the highest address to be
used, I subtract the additional bytes of reserved memory (1024)
from 32511. That turns up the number 31487. Thus I should respond
to MEMORY SIZE? with 31487. That being the case, I can begin
my special memory projects at address 31487, and as long as I do
not tinker around in memory addresses greater than 32511, the
line-printer driver program will remain intact.

Unfortunately, there is no way to protect blocks of memory within
the protected memory area. The programmer simply has to be very
careful about the matter, perhaps writing BASIC programs that
do not allow things to be POKEd into certain blocks of protected
memory.

SOME SPECIAL MEMORY OPERATIONS

Most TRS-80 literature refers to protected memory in the context
of machine-language programs: specifically, machine-language pro-

75

grams that are used in conjunction with BASIC programs. This is
a common situation and this book deals with it later on, but it isn’t
the only reason for reserving some protected memory. Protected
memory can be used as a repository for information that has nothing
at all to do with machine-language programming. And that is the
point of the following discussions.

Saving One-Line Text in Memory

The following BASIC program, PUTTING STUFF IN, lets you
type some text on the screen and save it in memory. Every character
is loaded into memory as you enter it, and the entering operation
ends only as you strike the pound-sign key (#).

The program assumes that the characters will be entered into
successive memory locations, beginning at 31487. This means you
have to save some protected memory by answering MEMORY
SIZE? with that number. Of course, you are free to change that
starting point of the protected memory; but if you do, be sure to
change the initial value of variable A in line 1010 accordingly.

The program further assumes you will not wish to enter more than
1000 characters. That limit is set by IM=1000 in line 1010. That,
too, can be changed if you wish.

1000 REM kk PUTTING STUFF IN 3k X
1010 A=31487:1=0:IM=1000

1020 CLS:PRINT CHR$(14);

1030 C$=INKEY$:AF C$="" THEN 1030
1040 IF 1>IM THEN 1110

1050 PRINT C$;:POKE A-+1,ASC(C$)
1060 IF C$="#" THEN 1090

1070 1=1-+1

1080 GOTO 1030

1090 PRINT:PRINT “TEXT ENTERED”
1100 END

1110 PRINT:PRINT “MEMORY FULL”
1120 END

So, get to the MEMORY SIZE? query by turning the TRS-80
off and on, and respond by entering the beginning address of some
protected memory—31487 in this example. Then do a RUN.

You will see the cursor on the screen, because the PRINT state-
ment in line 1020 turns it on for you. Then type in some text, any-
thing you want to enter into the protected memory space. When
you are done, strike the # key.

Striking the # key signals the end of the test-writing operation,
and the program will confirm that condition by printing TEXT
ENTERED.

Looking through some of the other lines, note how the current
character, carried as string C$, is both PRINTed on the screen and

76

POKEd into protected memory at line 1050. Variable 1, initialized
at zero in line 1010, is the character counter. It is incremented after
every character operation at line 1070,

If the value of I should ever exceed IM, the program brings up
a MEMORY FULL message and stops everything. The value of
IM (the maximum number of characters to be written into the
protected memory space) is set to 1000 in line 1010.

So this program, PUTTING STUFF IN, gets up to 1000 characters
loaded into successive memory locations in the protected memory
space. Just be sure to end the operation by striking the # key.
Now the problem is to get to that saved text material and print it
out on the screen again. This will confirm that the program works.

The next program, GETTING STUFF OUT, runs through the
protected memory, printing out saved characters until it sees the
pound-sign character.

2000 REM >k k GETTING STUFF OUT * %
2010 A=31487:i=0:IM= 1000

2020 C$=CHR$(PEEK(A+1))

2030 IF C$="#" THEN END

2040 PRINT C%;

2050 i=1+1

2060 IF 1>IM THEN 2080

2070 GOTO 2020

2080 PRINT:PRINT “OUT OF MEMORY"
2090 END

On doing a RUN 2000, GETTING STUFF OUT PEEKs at suc-
cessive addresses in the protected memory (line 2020) and prints
the characters contained therein (line 2040). The reading and print-
ing operation continues until it turns up the pound-sign character
(line 2030) at the end of the text or it runs out of memory (lines
2060 and 2080).

With those two programs entered into your system, check out the
operation of the scheme by writing in some text, making sure you
don’t strike the # key until you want to end the text-entering phase.
Then do a RUN 2000 to see the message you saved in protected
memory.

It is possible to slick up the operations a bit, using PUTTING
STUFF IN and GETTING STUFF OUT as subroutines for a nice
mainline program. Here, then, is 1-LINE TEXT MEMORY DEMO:

100 REM >k >k 1-LINE TEXT MEMORY DEMO 3k %
110 CLs

120 INPUT ““READ OR WRITE”;F$

130 [F LEFT$(F$,1)="W" THEN 150

140 IF LEFT$(F$,1)<<>"R” THEN 120 ELSE 170
150 GOSUB 1000

77

160 GOTO 120

170 CLS:GOSUB 2000

180 END

190 REM

200 REM

1000 REM sk PUTTING STUFF IN k%
1010 A=31487:1=0:IM= 1000

1020 CLS:PRINT CHR$(14);

1030 C$=INKEY$:IF C$="" THEN 1030
1040 IF 1>IM THEN 1110

1050 PRINT C$;:POKE A-+1,ASC(C$)
1060 IF C$=="#" THEN 1090

1070 1=I+1

1080 GOTO 1030

1090 PRINT:PRINT “TEXT ENTERED"
1100 RETURN

1110 PRINT:PRINT “MEMORY FULL”
1120 END

1130 REM

1140 REM

2000 REM >k GETTING STUFF OUT 3k %
2010 A=31487:1=0.IM=1000

2020 C$=CHR$(PEEK(A +1))

2030 IF C$="3F" THEN END

2040 PRINT C$;

2050 1=I-+1

2060 IF I>IM THEN 2080

2070 GOTO 2020

2080 PRINT:PRINT “OUT OF MEMORY”
2090 END

If PUTTING STUFF IN and GETTING STUFF OUT are already
resident in your BASIC memory space, all you have to do is enter
the mainline program (lines 100 through 200) and change line
1100 to RETURN instead of END. The program gives the option of
reading or writing into the protected memory.

If you choose to write, respond to the READ OR WRITE message
with a W and enter your text, ending with a pound sign. The pro-
gram immediately returns to the READ OR WRITE message and,
at that point, if you want to see a printout of the text, respond with
a R. After printing out the message saved in the protected memory
space, the program ends.

Incidentally, the text remains in the protected memory space,
even after the BASIC program ends. You can confirm that fact by
doing another RUN and specifying a READ operation right away.

Saving a Whole Screen of Texi/Graphics in Memory

It isn’t always easy to compose elaborate graphics on the TRS-80
screen. The SET/RESET feature eases the task a bit, however,
by saving you the trouble of building graphics out of the graphic

78

characte=—=— 7 set and doing the appropriate sequence of POKE state-
ments.

But ne==—— matter how you choose to go about composing a graphic,
it is pos=====sible to dump the finished product into some user’s memory
space a——=mmd call it back to the screen, rather quickly, whenever
you war—=mmm= t.

The f <=mm==>llowing demonstration uses some SET statements to draw
the face==—=— with a “have-a-nice-day” smile on the screen. As soon as
the drave=ss==sm..7ing operation is done, the entire screen—the video memory—
is transF— ~ —erred to user’s memory space, beginning at address 19454.
After tF————mat, this message appears on the screen: GRAPHIC IS
DRAWI™==] AND SAVED/ ENTER X TO GET IT FROM MEMORY.
When y —=====ou respond to the message by entering an X, the graphic is
duplicat——— <«d from user’s memory to the video memory. Note that this

transfer takes place quite a bit faster than the original drawing
operatiCzsmsw— 1.
Once the graphic is drawn and saved (program lines 20 through

180) yowmm== 1 can recall it to the screen at any later time by doing a RUN
200. Thi__ .=s assumes, of course, you have done nothing that will disturb
the cont—— -ents of the memory space where it is saved.

10 RES="SS= Mk ok SCREEN TRANSFER DEMO sk
20 CBe . S

30 FC—————=>R A=0.02 TO 6.28 STEP 0.02

40 X ======——== COS(A):Y=SIN(A)

50 SEE==m T(34%XH64,16KY +23):SET(4% X+ 48,2 % Y + 18):SET(4k X +80,2k Y+ 18)
60 N Zmm———XT A

70 FC————=R A=0.02 TO 3.14 STEP 0.02

80 SEE=——— “T(16kCOS(A)-+64,8% SIN(A) -+25)

90 N ZEEE——XT A

100V === 15360:M== 19454

110 FC—————>R 1=0 TO 1024

120 PC————=>KE M+,PEEK(V +1)

130 N =E=E=——XT |

140 CEE______ S

150 PE=======_INT GRAPHIC IS DRAWN AND SAVED"
160 pr=======_INT “ENTER X TO GET IT FROM MEMORY”
170 i——Z=2E PUT $$

180 IF $$="X" THEN 200 ELSE 170

200 V === 15360:M= 19454

210 cEE= S

220 FC————>R 1=0 TO 1024

230 PCC———"KE V+|,PEEK(M+1)

240 N FEEESXT |

You e=———=an replace program lines 10 through 90 with any text or
graphic- ———drawing routine you choose. Just work things out so that
your pr =====—-gram goes to line 100 when it is time to transfer the screen
materia. __== to user’s memory.

79

Of course, you can change the location of the graphic storage space
by changing the value of the M variable in lines 100 and 200. This
variable represents the starting address for the storage area, and
the routine occupies 1024 bytes from there.

Then, too, you can change the line numbers if you find you do not
have enough space for your drawing routine. Just bear in mind that
lines 100 through 180 transfer the screen information to user’s mem-
ory, and lines 200 through 240 bring it back.

This is not really the most efficient sort of graphic-storage tech-
nique; a better one would use some space compression techniques
to eliminate the storage of long strings of spaces. But this technique
does illustrate one powerful use for user’s RAM space.

80

CHAPTER 5

Linking BASIC and Machine Language With USR

Any protected memory can be used as a repository for data—
data being used in conjunction with some BASIC programming.
This notion was described and demonstrated in the latter part of
Chapter 4.

But that same sort of protected memory can also be used as a
place for storing machine-language programs. And those programs,
like the data that could be stored there as well, can be used in con-
junction with some BASIC programming. This is the main topic
of this chapter.

Using BASIC and machine-language programs together can be
useful at times and, certainly, instructive at any time. The idea is
especially useful when you are writing special utility programs that
manipulate the character of a resident BASIC program; and when
it comes to writing BASIC programs that call for some high-speed
graphics, a machine-language subroutine can be invaluable.

As far as being instructive, the idea of using BASIC and machine-
language at the same time can be a useful learning tool, especially
in cases where the user is fairly well acquainted with BASIC but
knows little about machine-language programming,

When using BASIC and machine language at the same time, the
BASIC programming always resides at the lower end of the user’s
memory space. Not much can be done about changing that position
for the BASIC, because it is automatically established by some TRS-
80 ROM programming. (See the details of this particular matter
in Chapter 4.)

The machine-language part of the scheme always resides in a
portion of user’s memory that is above all the BASIC—in some pro-
tected memory space. You, the user, must establish the size, or

starting address, of that protected memory by making an appropriate
response to the MEMORY SIZE?P query. Again, the details for this
operation are outlined for you in Chapter 4.

In a practical sense, then, the first thing you must always do when
combining BASIC and machine-language programming is to set
aside some protected memory space for the machine-language part.
And you must keep track of the number you specity in response to
the MEMORY SIZE? query, because it marks the lowest possible
address you can use for storing the machine-language program.

Suppose the BASIC is automatically set to the lower part of the
user’s memory, and you establish the starting point for the machine-
language programming in the upper part of the user’s memory. Now,
how do you get a BASIC program to call the machine-language pro-
gram, and vice versa? Answer: Use the BASIC USR statement.

The USR statement is your link between BASIC and any machine-
language programming. Actually, the USR statement works much
like a GOSUB; whenever the computer is running a BASIC program
and encounters a USR, operations are sent to a specified starting
address for a machine-language program. Just how that starting ad-
dress is specified will be discussed in a moment.

So a USR statement gets operations from BASIC to machine lan-
guage. But how, if you want, do you get back from a machine-
language program to BASIC? How, if USR works like a GOSUB, do
you carry out the RETURN part of the call?

Returning from a machine-language program to BASIC is a
matter of ending the machine-language subroutine with a machine-
language version of a RETURN statement. There are several differ-
ent kinds of machine-language RETURN instructions, and it is up
to you, the machine-language programmer, to select the right one
for the job at hand. But the point is that a machine-language version
of a RETURN sends control back to the BASIC line that follows
the USR statement.

GETTING SET UP FOR A USR OPERATION

While the TRS-80 system automatically initializes a great many
different operations, it does not initialize the USR function. You
have to prepare the way yourself,

First, you must set aside some useful amount of protected mem-
ory for the machine-language programming. As described in Chapter
4, that is a matter of responding to the MEMORY SIZE? query with
an address that marks the beginning of the protected memory space.

Keep track of that number, because it represents the lowest ad-
dress you can call from BASIC.

The next step is to prepare some critical parts of the BASIC

82

routine. Schemes that combine BASIC and machine language always
begin operation in BASIC; and one of the critical BASIC operations
is to establish the starting address of the machine-language sub-
routine. USR works like a GOSUB, but, just as you must specify a
line number for a GOSUB statement, you must also specify a starting
address for a USR-called machine-language subroutine.

Now, that starting address can be the lowest-available address
in protected memory—the same address you entered in response to
the MEMORY SIZE? query. But it can be any address within the
protected memory space.

That starting address is specified as a 2-byte decimal number that
is POKEd into addresses 16526 and 16527. The Isb of the 2-byte
version of the starting address goes into 16526 and the msb goes
into 16527. Suppose, for example, you want to begin a BASIC-
called machine-language subroutine at 31404. Converting that deci-
mal number to a 2-byte decimal format (as described in Appendix
A), it comes out to be 122 172—msb and Isb, respectively.

To call a machine-language subroutine that begins at address
31404, the BASIC program must include the following:

POKE 16526,172:POKE 16527,122

Whenever the computer encounters a USR statement, it first looks
to addresses 16526 and 16527 to find out where the machine-lan-
guage routine is to begin. Those two “magic numbers” never change.
It is up to you, however, to specify the 2-byte version of the starting
address in those memory locations.

To initialize a machine-language subroutine from BASIC, you must:
POKE 16526,Isb:POKE 16527,msh

where Isb and msb are the least significant and most significant bytes of a
2-byte version of the starting address.

Anytime after specifying the starting address of the machine-
language subroutine, you are free to write in a USR statement to
call it. POKEing the starting address does not actually call the
subroutine; the USR statement does that.

Most programmers who use BASIC and machine language to-
gether specify the starting address—with the two POKE statements
—rather early in the BASIC program. That way they can be sure
the subroutine is properly initialized when they are ready to write
in the USR statement.

83

So far in this discussion you have seen how to set aside some pro-
tected memory space for a machine-language program and then
specify the starting address of a machine-language subroutine. The
final step in the operation is to specify the USR statement itself.

The expression USR is not a complete statement, but it must be
presented as a complete statement if the BASIC program is to
execute it—to call the machine-language subroutine you have
specified.

A complete USR statement can take on several forms, depending
on what you want it to do:

1. Call a machine-language subroutine and return to BASIC with-
out passing any values in either direction.

2. Carry a value from BASIC to the machine-language subrou-
tine but return to BASIC without passing a value.

3. Call a machine-language subroutine without passing a value
but return to BASIC, carrying a value.

There are several variations that combine a couple of these basic
kinds of USR-oriented operations, but these are the fundamental
ones.

In the first case, passing no values between the two kinds of pro-
grams, the USR in BASIC simply calls a machine-language sub-
routine that does a job that does not generate any numbers that
are useful to the BASIC program. Perhaps the machine-language
program generates some high-speed animation graphics and does
nothing to generate any numbers that are useful to later BASIC
operations. The USR statement that calls the subroutine is likewise
lacking in any numerical information that is useful to the anima-
tion sequence.

Calling a machine-language subroutine, without passing any val-
ues, can be done with a statement such as

X=USR(X)

where the Xs are dummy variables—variables arbitrarily chosen
simply to fit the USR function into a complete BASIC statement. A
statement such as A=USR(B) would accomplish exactly the same
thing,.

Assuming that a machine-language program is already loaded
into protected memory, beginning at address 31488, a typical BASIC
sequence could look like this:

10 POKE 16526,0:POKE 16527,123

20 Cis

30 X=USR(X)

40 PRINT “IT'S DONE"
50 END

84

Line 10 in this example establishes the calling address at 31488,
line 20 simply clears the screen, and the USR statement in line 30
calls the machine-language program. And when the system is
through with the machine-language subroutine (and assuming that
subroutine ends with a RETURN-like instruction), operations return
to BASIC at line 40, printing the 1T’S DONE message and coming
to an END at line 50.

No numerical values are passed from BASIC to the machine-
language subroutine, and none return to BASIC when the sub-
routine is done.

The second major class of USR calls passes some value from
BASIC to the machine-language subroutine. Maybe you would like
the machine-language subroutine to print some characters on the
screen, with those characters being specified from the keyboard
while the BASIC part of the program is still running. That is just
one sort of operation that calls for passing a variable value from
BASIC to machine language.

Calling a machine-language subroutine, and passing a value to
it from BASIC, can be done with a statement such as:

X=USR(Y)

where X is still an arbitrarily chosen dummy variable, but Y is
some integer between —32,768 and 32,767. The dummy variable,
X, is necessary only to fit the USR function into a complete BASIC
statement. A statement such as X=USR(65), for example, will
carry decimal number 65 to the machine-language program, where
it will be used for some particular purpose.

Here is a program that passes an ASCII character code, in deci-
mal, to a machine-language program:

10 POKE 16526,0:POKE 16527,123
20 CLS

30 INPUT S$

40 S=ASC(S$)

50 X=USR(S)

60 PRINT “DONE”

70 GOTO 30

The program assumes that some sort of machine-language program
is in protected memory and begins at address 31488. That starting
address is specified by the POKE statements in line 10. Line 20
clears the screen, and line 30 allows you to input some value for S$
from the keyboard. Line 40 assigns the ASCII version of that vari-
able to S, and line 50 calls the machine-language subroutine, passing
the value of S to it. When the system is through executing the
machine-language subroutine, operations return to line 50 of the

85

BASIC program, PRINTing a DONE message and looping back up
to line 30, giving you a chance to pass another ASCII character
code to the subroutine.

The argument in the USR statement—the term enclosed in paren-
theses—can be a function as well as an integer value. Taking ad-
vantage of this feature, the previous example can be shortened
somewhat: omit line 40, and replace line 50 with X=USR(ASC
(58$)).

Recall that any value passed from the USR to the machine-
language program must be an integer value. If you are doing some
mathematical operations in BASIC that might pass a value that isn’t
an integer, you can goofproof the system by doing something such
as X=USR(INT(Y)), where Y can be any value—integer or other-
wise—between —32,768 and 32,767.

Finally, you can always pick up a numerical value from a machine-
language program and pass it back to the BASIC programming.
Perhaps your machine-language programming does some math
or logic operations for you, and you want to return the results
to BASIC.

Calling a machine-language program and bringing back a value
when it returns to BASIC can be done with a statement such as

Y =USR(X)

where X is a dummy variable used to make a complete BASIC
statement, and Y is the value returned from the machine-language
program. That value returned from machine language will be some
integer between —32,768 and 32,767.

Here is a program that picks up a value from a machine-language
program that it calls:

10 POKE 16526,0:POKE 16527,123
20 CLS

30 Y=USR(X)

40 PRINT Y

50 END

This one assumes a machine-language program begins at address
31488, a point specified by the POKEs in line 10. Line 20 clears
the screen, and line 30 calls the machine-language subroutine.
When the system returns from that subroutine, line 30 has called for
assigning the numerical result to variable Y. Line 40 then prints that
value for you.

It is possible to shorten the BASIC program in this case by omit-
ting line 40 and rewriting line 30 this way:

30 PRINT USR(X)

86

This modification bypasses the need for variable Y, and it illustrates
the fact that a USR function can be used in more than one sort of
complete BASIC statement. The USR function is a function, and
it can be used as such—just as ABS, INT, SQR, and a whole host
of BASIC functions are used.

This completes the discussion of the three fundamental USR
operations, at least from the BASIC point of view. Much of the
material remaining in this chapter considers the same sorts of things
from the machine-language viewpoint.

Before getting down to the machine-language view of things,
consider an important variation of two kinds of USR operations:
combining those passing a value from BASIC with those passing
a value back from the machine-language program. Such a scheme
can look like this in BASIC:

10 POKE 16526,0:POKE 16527,123
20 INPUT S$

30 PRINT USR(ASC(S$))

40 GOTO 20

Assuming once more that a machine-language program is resident
and beginning at address 31488 (as specified by line 10), the BASIC
program picks up a value for S$ from the keyboard at line 20. Line
30 then passes the ASCII value of that string to the machine-lan-
guage program, and after the machine-language program has pre-
sumably done some manipulations with that value, line 30 also
brings back the result to BASIC and prints it on the screen.

So line 30 actually does three things: it calls a machine-language
subroutine, passes an ASCII version of S$ to it, and then brings
back the result from machine language, printing it on the video
display.

A PRELIMINARY NOTE ABOUT
MACHINE-LANGUAGE PROGRAMMING

Machine-language instructions are stored in memory as 1-byte
binary numbers. Every instruction that the Z-80 microprocessor
(the one used in your TRS-80) can perform is represented by one
of those 1-byte op codes.

Appendix B is a complete listing of the Z-80 instruction set, in-
cluding the op codes and almost-plain-English source-code mne-
monics. Every machine-language instruction used in this book can
be found somewhere in that listing.

So you can find the complete instruction set for Z-80 machine-
language programming in this book, but you will find no details
concerning the actions of these instructions nor any special dis-

87

cussions of fundamental machine-language programming. All of
that sort of thing is beyond the scope of this book. Indeed, it is
unfortunate that it is impractical to write a single volume that both
spells out the special features of the TRS-80 system and teaches
beginners how to handle machine-language programming. It is
simply too much for one book.

The emphasis of this book is on what can be done with your
Level I1 TRS-80. The how of the matter is described in general
terms and does not (cannot) get down to the finer details of
machine-language programming,

You can certainly work the examples and demonstration programs
without having any knowledge of machine-language programming,
but you have to learn that sort of programming on your own if you
want to extend the examples and demonstrations to suit your needs.

Any good book on the Z-80 microprocessor and its instruction set
will do. Learn that sort of thing from another source, and this book
will help you fit it into the context of your TRS-80 machine.

POKEING IN MACHINE-LANGUAGE
PROGRAMS FROM BASIC

When linking BASIC and machine-language programs with the
USR function, the BASIC program generally performs two functions.
Tt calls the machine-language program as outlined in several difter-
ent ways earlier in this chapter. But it also loads the machine-
language program into protected memory for you.

Thus there are at least two phases to the BASIC part of the
scheme: loading the machine-language program and calling it when
the loading is done.

After you have written a machine-language program on paper it
must be POKEd into its memory space, one byte at a time and in
the proper sequence.

The simplest possible machine-language program in a USR-
linked scheme is one that does nothing more than return operation
to the BASIC program. The instruction code for an unconditional
RETurn is decimal 201. So if a 201 is POKEJ into the starting ad-
dress of the machine-language program, a USR function will call it
from BASIC, and it will return control immediately back to the
BASIC program. Here is a complete example that you can run
on your machine:

10 POKE 16526,0:POKE 16527,123
20 POKE 31488,201

30 X=USR()

40 CLS:PRINT “IT WORKEDH"

50 END

88

It isn’t a very exciting program, but it serves as an example of the
discussion at hand.

Line 10 establishes the starting point of the machine-language
program at 31488. The 0 and 123, you recall, are 2-byte versions
of the starting address. The purpose of that line is to tell the USR
function where it is supposed to begin execution of the machine-
language program.

Line 20 represents the main point of this discussion. That state-
ment POKEs the one-instruction machine-language program into
memory address 31488. The 201 is a decimal version of the Z-80’s
unconditional RETurn instruction.

Now, it is no coincidence that line 10 sets the starting point at
address 31488 and line 20 pokes the first (and only) machine-
language instruction into that same address. The first instruction
and the starting point of the USR-called subroutine must be
the same.

By the time the system completes its execution of line 20 the
BASIC program has loaded the machine-language program. The
next step is to execute that machine-language program, and that
is done by the USR statement in line 30.

It should be apparent that the machine-language program must be
entered before it is called by the USR function. The statement in
line 20 must occur sometime before the statement in line 30.

The statement in line 10—establishing the calling address for the
USR function—must occur before USR does but not necessarily
before the machine-language-loading operation. Line 10, for ex-
ample, could be moved to, say, line 25, and things would work
just as well. It is a fairly well established convention, however, to
specify the starting address of the machine-language programming
very early in the BASIC routine.

So line 20 calls the one-instruction machine-language program.
And when control returns to BASIC, things pick up at line 40,
clearing the screen and printing IT WORKED!!,

Incidentally, if you failed to POKE the right instruction into
memory at line 20, the system might not return at all. It would
most likely go “into outer space,” making it necessary to do a RE-
START (depressing the RESTART push button on the back of your
TRS-80 unit) or a total power-up.

Seeing the IT WORKEDI!! message in this case confirms the
proper function of that one-instruction subroutine.

When loading a machine-language program from BASIC POKE
statements, the op codes must be entered in a decimal format. TRS-
.80 BASIC, you see, is a decimal-oriented language. This poses a
minor difficulty, because the Z-80 instruction set specifies the op
codes in a hexadecimal format. So an unconditional RET in Ap-

89

pendix B is shown as C9. This is a hexadecimal number. But the
same instruction is represented as a 201 in that last example. Where
does the 201 come from? It is the decimal version of hexadecimal C9.

The moral of the story is this: hexadecimal op codes from the
Z-80 instruction set must be converted to decimal before they can
be entered into memory by way of POKE statements. See Appendix
A, Table A-1, to make the necessary conversion.

Most machine-language programs have more than one instruction
in them-a lot more. Each one of them has to be loaded into memory
by a POKE statement; if you have a lot of instructions, you can
end up with a whole lot of POKE statements.

Things are generally simplified, however, by enclosing the instruc-
tion-POKEing statement within a FOR ... NEXT loop. And if that
FOR . ..NEXT loop also contains a READ statement, the instruc-
tions can be written in their proper sequence in some DATA lists.

Here is a working example:

10 POKE 16526,0:POKE 16527,123

30 FOR 1=0 TO 5:READ D:POKE 31488+ 1,D:NEXT |
40 CLS

50 X=USR(X)

60 PRINT:PRINT

70 END

100 DATA 62,65,50,0,60,201

Line 10 sets the starting point of the machine-language program
at 31488. This assumes, of course, you have previously set aside
some protected memory that includes that address. The program
is loaded into protected memory by the statements in line 30.

Line 30 includes a READ statement that references the DATA
list in line 100. Line 100, incidentally, is the machine codes to be
entered. In this case it is a 6-byte program. So as variable I is incre-
mented from 0 to 5, the READ statement picks up the DATA items
in sequence, and the POKE statement inserts them into successive
memory locations, beginning at 31488--the place already specified
as the starting point in line 10.

Once the system completes the execution of line 30 the machine-
language program-is completely loaded, and the next series of
BASIC operations clears the screen, executes the machine-language
program (line 50), does a couple of PRINTSs, and then ENDs.

We'll discuss the machine-language program, itself, shortly. What
is more important now is the way the BASIC program loads the
machine-language program.

The statements shown here in line 30 have a form that is almost
universally accepted as the general procedure for loading a machine-
language program from BASIC. The features thus call for a detailed
analysis.

90

The first part of the line reads, in general:
FOR i=0 TO n

where

i is any numerical variable name,
n is the number of machine-language bytes to be loaded, minus 1.

There are six items in the DATA list in the previous example,
so the first part of the loading sequence should read: FOR I=0
TO 5. If there happened to be 25 items in the DATA list, you would
write FOR I=0 to 24.

The second part of the loading sequence reads:

READ d

where d is any valid numerical variable name.
The third part looks like this, when presented in a general form:

POKE a+i,d

where

a is the starting address of the machine-language program,

i is the same variable used in the first phase of the loading op-
eration,

d is the same variable READ in the previous statement.

The value of address a in this statement must be a conventional
decimal version of the starting address specified in a 2-byte decimal
format at the beginning of the program. In this case, address 31488
is the conventional decimal form of 123 0.

Putting it all together, the line for entering a machine-language
program from BASIC looks like this:

FOR i=0 TO n:READ d:POKE o-i,d:NEXT i

where
i and d are any convenient numerical variable names,
a is the starting address of the machine-language program,
n is the number of bytes in the machine-language program, minus 1.

This entire scheme for loading a machine-language program
from BASIC assumes you have listed the instructions and data as
decimal numbers in a DATA list. In the previous example the
DATA list read: 62,65,50,0,60,201. A disassembled version is shown
in Table 5-1.

9

Table 5-1. A Typical Decimal-Oriented Machine-Language Program

Address Op Code Mnemonic Comment

123 0 62 65 LD A,65D ;LOAD ASCIH “A” INTO REGISTER A
123 2 50 0 60 LD (15360D),A ;LOAD A TO THE VIDEO MEMORY
123 5 201 RET ;RETURN TO BASIC

Table 5-1 is a formal, assembly-language version of the program
executed by a USR function in line 50 of the previous BASIC pro-
gram. It prints the letter A at the first video memory location.

The assembly-language program in that table has some features
that are common to any sort of Z-80 source and op-code listing.
One difference is that the op codes are presented in a decimal, rather
than hexadecimal, format. The addresses are also in a decimal
format—a 2-byte decimal format, to be exact. The justification for
using addresses in this peculiar 2-byte decimal format will become
clear in a later section of this chapter. The mnemonics are standard
7-80 mnemonics, and the comments are typical of those used with
any machine-language programming.

If you are totally confused by the listing in Table 5-1, you will
have to consult a Z-80 assembly-language book or manual (e.g. look
at Radio Shack’s TRS-80 Assembly-Language Programming).

When you get tired of seeing this program do nothing but print
a single A in the upper left-hand corner of the screen, change the
number in the second item of the DATA list to some other number
between 33 and 191. Then run the program again.

That little exercise, incidentally, suggests how easy it is to
modify a machine-language program that is loaded from BASIC;
just change the item or items in the DATA list and, if necessary,
adjust the value of n in the FOR i=0 TO n part of the loading
routine.

SOME PROGRAMMING EXAMPLES

The following examples of USR-called programs are intended to
illustrate the range of interaction that is possible between a BASIC
program and a machine-language program that it can call. In
every instance the BASIC program not only controls the calling of
a machine-language program but loads it into a specified section
of protected memory as well. All examples assume you have re-
sponded to MEMORY SIZE? with a number no greater than 31488.

A Simple Calling Routine From BASIC

Here is a decimal-oriented, machine-language program that sim-
ply draws a wide white bar across the top line of the screen:

92

;WIDE BAR ROUTINE

123 0 33 0 60 START: LD HL,15360D ;POINT TO START OF VIDEO
123 3 62 63 LD A,63D ;END OF COUNT TO A

123 5 54 191 AGAIN: tD (HL),191D ;SET GRAPHIC CHARACTER
123 7 189 CP L ;LOOK FOR END

123 8 200 RET Z ;RETURN IF AT END

123 9 35 INC HL ;NEXT VIDEO POINT

123 10 195 5 123 JP AGAIN ;DRAW AGAIN

;END

Basically, the program loads character code 191 (full rectangle)
into the 64 character locations across the top of the screen. Here is
a BASIC program for loading and executing it:

0 REM 3k3k CALL A WHITE BAR >
10 POKE 16526,0:POKE 16527,123
20 FOR 1=0 TO 12:READ D:POKE 31488-1,D:NEXT 1|
30 Cis
40 X=USR(X)
50 PRINT:PRINT
60 END
100 DATA 33,0,60,62,63,54,191,189,200,35,195,5,123

The BASIC program loads the machine-language program from
the DATA list in line 100, using the procedure in line 20. After that,
it clears the screen (line 30), calls the machine-language program,
and does a couple of PRINTSs before coming to an END. Of course
the white bar is drawn the moment the BASIC program calls the
machine-language program via a USR statement. The RET Z in-
struction in the machine language ensures that the operations return
to BASIC when the line-drawing operation is done.

Conditioning a Call at the BASIC Level

In some actual applications you might not want to execute the
machine-language portion of a program unless certain conditions
are met at the BASIC level. Using the same machine-language pro-
gram--the one that draws a white bar across the top of the screen—
you can make the drawing of the line contingent on striking the
B key. Here’s the revised BASIC program:

0 REM >k %k CONDITIONAL CALL FROM BASIC %%k
10 POKE 16526,0:POKE 16527,123
20 FOR I=0 TO 12:READ D:POKE 31488+ 1,D:NEXT 1|
25 C$=INKEY$:IF C$=""" THEN 25
30 IF C$="B" THEN 40
35 PRINT “NOT YET”:GOTO 25
40 CLS:X=USR(X)
50 PRINT:PRINT
60 END
100 DATA 33,0,60,62,63,54,191,189,200,35,195,5,123

93

This BASIC program still loads the machine-language subroutine.
See lines 20 and 100. Doing the USR function, however, is contin-
gent on striking the B key. Until that happens, striking any other
key yields a NOT YET message.

Conditioning the call of a machine-language subroutine can be
a rather sophisticated operation. For example, you might work out
a BASIC program of this sort, allowing it to execute the USR func-
tion (and hence the machine-language program) only on typing
the string CALL BAR, or something like that.

Repetitive Calling

The following program draws a solid bar of light across the top
of the screen. Everything remains unchanged until you depress
the F key. At that time the bar begins flashing on and off, and it
remains flashing until you release the F key.

The BASIC program is responsible for sensing the depression
of the F key and calling a machine-language program that first
turns off the light, and then turns it on again. After completing that
one cycle, control returns to BASIC, where the F key is checked
again. If that key is still depressed, the control returns to the ma-
chine-language program for another off/on cycle. But when control
returns to BASIC and at that time the F key is no longer depressed,
the program continues looping in BASIC until the F key is depressed
again.

This is an example of looping around and around between a
BASIC and machine-language program. Such loops have some
powerful applications, especially when it comes to doing some
real-time, animated graphics.

The flashing effect, by the way, is far less satisfactory if it is
generated—if the bar is alternately erased and drawn—in purely
BASIC terms. Even POKE graphics do not run fast enough to
create a good flashing effect of such a long bar on the screen.
Machine-language graphics certainly does the job, as you will see
when running this program.

Here is the BASIC part of the program:

0 REM k3 FLASHING BAR WITH BASIC CONTROL *k %

10 POKE 16526,0:POKE 16527,123

20 FOR 1=0 TO 37:READ D:POKE 31488 |,D:NEXT |

30 CLS:PRINT @ 64,”DEPRESS THE F KEY TO GET A FLASHING BAR OF
LIGHT ... "

40 IF PEEK(14463)=0 THEN 40

50 C$=INKEY$

60 IF C$<C>"" THEN R$=C$

70 IF RE<>"F' THEN 40

80 X==USR(X)

90 GOTO 40

94

100 DATA 6,128,205,11,123,6,191,205,11,123,201
100 DATA 33,0,60,62,63,112,189,202,25,123,35,195,16,123
120 DATA 22,225,14,225,13,194,29,123,21,194,27,123,201

Line 10 sets the starting address of the machine-language program
at 31488, and line 20 loads that program from DATA lines 100, 110,
and 120. That is a 38-byte program there.

Line 30 simply clears the screen and prints a prompting message
at the second line on the screen.

The real looping action, the main point of the demonstration,
begins at line 40. This line, working together with lines 50 and 60,
views the keyboard as a big set of normally open push-button
switches. Line 70, however, maintains the key-searching loop until
you depress the F key.

Line 80 uses the USR function to call the machine-language sub-
routine—a routine that flashes the white bar off and on one time.
After completing just one flashing cycle in machine language, con-
trol returns to BASIC at line 90.

Now, line 90 restarts the key-sensing loop; and if the F key is
still depressed, line 80 is executed again, and the bar of light flashes.
As long as that F key is depressed, the USR function and the ma-
chine-language subroutine become part of a loop. Line 80 is re-
moved from the loop only when the F key is not depressed.

So, indeed, machine-language programs can be written into a
BASIC program loop.

In passing, notice the short time delay between the time you
do a RUN for the program and the appearance of the prompting
message. That delay will occur only when you start this program
from scratch, and it is caused by the time required for POKEing
the machine-language op codes into your protected memory space.

The machine-language program, itself, is justified in its hand-
assembled form in Table 5-2. The number of jumps and calls’in
the routine clearly demonstrates the value of specifying the addresses
as 2-byte numbers. Note that only the Isb of those addresses changes.
The same msb is good for up to 256 memory locations.

PASSING A VALUE TO THE
MACHINE-LANGUAGE SUBROUTINE

As stated earlier in this chapter the statement X=USR(Y) will
pass the value of the argument, the Y, to the subroutine it calls, pro-
vided Y is an integer between —32,768 and 32,767. This is stating
the case in a very general way, however. It is more precise to say
that the X=USR(Y) statement makes the value of the argument
available to the machine-language program it calls.

95

Table 5-2. Machine-Language Progam Called by the BASIC Program
FLASHING BAR WITH BASIC CONTROL

Address

Op Code Mnemonic Comment
123 0 6 128 START: 1D B,128D ;SET B FOR OFF
123 2 205 11 123 CALL DRAW ;DRAW “OFF"
123 5 6 191 LD B,191D ;SET BE FOR ON
1237 205 11 123 CALL DRAW ;DRAW ““ON"
123 10 201 RET ;RETURN TO BASIC
123 11 33 0 60 DRAW: LD HL,15360D ;START OF VIDEO MEMORY
123 14 62 63 LD A,63D ;SET END IN A
123 16 12 AGAIN: LD (HL),B ;DRAW CHARACTER OF B
123 17 189 CP L ;LOOK FOR END
123 18 202 25 123 JP Z,TIME ;IF END, DO TIME DELAY
123 21 25 INC HL ;ELSE SET FOR DRAW

AGAIN

123 22 195 16 123 JP AGAIN JUMP TO DO AGAIN
123 25 22 255 TIME: LD D,255D ;SET MSB OF TIME DELAY
123 27 14 255 SETC: LD C,255D ;SET LSB OF TIME DELAY
123 29 13 DECC: DEC C ;COUNT DOWN LSB
123 30 194 29 123 Jp NZ,DECC ;DO AGAIN IF NOT DONE
123 33 21 DEC D ;COUNT DOWN MSB
123 34 194 27 123 JP NZSETC ;0O AGAIN IF NOT DONE
123 37 201 RET ;RETURN AT END OF TIME

Whenever a value is to be passed from

BASIC to a machine-

language program, the first step in the machine-language program
must be a CALL 2687D. The value passed from BASIC, in other
words, has to be pulled from somewhere else by another sub-
routine—one executed by doing the CALL 2687.

And after that CALL is executed, the value of the argument
will appear in the Z-80’s HL register pair. It is then up to the pro-
grammer to do something with it.

A machine-language CALL 2687D places the value of a passed term into
the HL register pair.

Here is a machine-language program and its BASIC calling pro-
gram that illustrate the point:

123 0
123 3
123 4
123 7
123 8

205 127 10

33 0 60

CALL 2687D
LD AL

LD HL,15360D
LD (HL),A

;GET THE PASSED VALUE
;LOAD LSB TO A

;POINT TO START OF VIDEO
;PUT VALUE ONTO SCREEN
;RETURN TO BASIC

0 REM %k CARRY A CHARACTER TO SUBROUTINE 3%

10 POKE 16526,0:POKE 16527,123

26

20 FOR i=0 TO 8:READ D:POKE 31488-1,D:NEXT |
30 CLS

40 C$=INKEY$:\F C$=""" THEN 40

50 X=USR(ASC(CS$))

60 GOTO 40

100 DATA 205,127,10,125,33,0,60,119,201

The BASIC portion of the scheme loads the machine-language
program, then looks for a character string from the keyboard. On
finding one, line 50 both converts the character string to its ASCII
value and calls the machine-language subroutine. And after the
machine-language routine does its job—to be described shortly--the
BASIC program simply loops back to line 40, giving you a chance to
enter another character.

Now look at the machine-language part of the project. The
BASIC program passes ASC(C$) to the machine-language subrou-
tine, and the first instruction in that subroutine calls the value from
its mysterious place in the TRS-80 memory. On completing execution
of that instruction the value passed from BASIC resides in the Z-
80’s HL register pair.

The second line in the machine-language program loads the con-
tent of register L into register A. The Isb of the value passed to
the subroutine is thus saved in that register. There is no need to
save the content of the H register in this particular case, because
ASCII values cannot exceed 255 and are thus completely specified
in a single, 1-byte register—the L register in this case.

So the second line saves the ASCII character code in register A.
That is an important step, because the next instruction uses the
HL pair for another purpose—to point to the beginning of the video
memory. Then the ASCII code is moved from register A to the video
memory, where the character appears on the screen.

The last line in the machine-language program simply returns
operations to BASIC.

Not a very exciting program, perhaps, it simply prints whatever
character is entered from the keyboard. But the entry operation
is done in BASIC and the printing is done in machine language; and
that illustrates the main point of this discussion: passing a value
from BASIC to machine language.

The next BASIC/machine-language routine is another example
of passing a value from BASIC. Unlike the previous example, this
one has the potential for working with numbers that occupy a reg-
ister pair—passing numbers that may be larger than 255.

The BASIC program loads the machine-language subroutine,
then enters a loop that allows you to enter decimal numbers between
0 and 1023. For the purposes of this demonstration, those numbers
represent the range of plotting positions on the crt. The numbers are

97

123 0 205 127 10 CALL 2687D ;GET THE PASSED VALUE TO HL
123 3 235 EX HL,DE ;GET PASSED VALUE TO DE

123 4 33 0 60 LD H1,15360D ;POINT TO VIDEO

123 7 175 XOR A ;CLEAR A REGISTER

123 8 54 131 DRAW:LD(HL),131D ;DRAW LINE SEGMENT

123 10 187 CPE ;LOOK FOR END OF LSB VALUE
123 11 194 16 123 JP NZ NEXT HUMP IF NOT DONE

123 14 186 CP D ;LOOK FOR END OF MSB VALUE
123 15 200 RET Z ;IF DONE, RETURN TO BASIC
123 16 27 NEXT:DEC DE ;COUNTDOWN VALUE

123 17 35 INC HL ;SET NEW VIDEO POINT

123 18 195 8 123 JP DRAW ;DRAW AGAIN

0 REM X3k PRINT @ LINE DRAW k3
10 POKE 16526,0:POKE 16527,123
20 FOR 1=0 TO 20:READ D:POKE 31488 +1,D:NEXT 1|
30 CLS
40 INPUT Y
50 IF Y<0 OR Y>1023 THEN 40
60 CLS
70 X=USR(INT(Y))
80 PRINT:GOTO 40
100 DATA 205,127,10,235,33,0,60,175
110 DATA 54,131,187,194,16,123,186,200
120 DATA 27,35,195,8,123

comparable to those used for doing PRINT @ operations in BASIC.

Instead of printing a character at a single point, however, the
machine-language part of the program draws a continuous white
line, beginning at point 0 on the screen and running to the value
passed from the BASIC program.

The endpoint-coordinate of the line is INPUT at line 40. The
conditional in line 50 goofproofs the system from numbers outside
the video-memory range. Line 70 calls the machine-language sub-
routine, but also goofproofs the system against any fractional num-
bers the user might try to enter. Recall that numbers passed to a
machine-language subroutine must be integer values. (Things will
happen if you attempt to pass a noninteger value, but there will
seem to be no rational correspondence between the specified number
and the response of the machine-language program.)

Notice that the machine-language program begins with the man-
ditory CALL 2687. The step is mandatory, at least, if you want to
work with the value passed from the BASIC part of the scheme. That
operation always puts the passed value into the HL pair, but this
writer wanted to use the HL pair as a video-memory pointer; so
the next step is to exchange the HL. and DE register contents. That
effectively moves the passed value to the DE pair.

The remainder of the machine-language program simply plots
character code 131 onto the screen, counts down the value passed

98

from BASIC, and moves to the next character space on the screen.
The machine-language routine continues looping in this fashion
until the value passed to it is counted down to zero. Then the
control is returned to BASIC, where you have a chance to enter
another endpoint number between 0 and 1023.
The main points demonstrated by these two programs are:

1. A value passed from BASIC to machine language must be
picked up at the machine-language level by executing a CALL
2687 (decimal).

2. A value picked up by a CALL 2687 will appear in the Z-80s
HL register pair.

3. You are free to manipulate that value as it is passed to the HL
register pair.

PASSING VALUES FROM MACHINE LANGUAGE TO BASIC

A BASIC statement such as Y=USR(X) will call a machine-
language subroutine and return to BASIC with a value assigned
to the Y variable. An alternate form is PRINT USR(X): a statement
that will immediately print the value returned from the machine-
language routine.

But in order to pass a value from a machine-language routine
to BASIC, that value must be residing in the Z-80's HL register
pair, and there is a very special, mandatory technique for return-
ing to BASIC.

Whenever you want to pass a value back to BASIC, the machine-
language program must end with this instruction:

195 154 10 JP 2714D SRETURN TO BASIC WITH VALUE

Such a routine does not return to BASIC with one of the usual sorts
of RETurn instructions. Technically speaking, that mandatory
JUMP instruction sends operations to a place in TRS-80 ROM that
does the RETurn job for you, and in the meantime it takes care of
the operations involved in assigning the value in the HL register
pair to the USR function in the BASIC listing.

So when you are ready to get out of a machine-language sub-
routine and return a value to BASIC, you must make sure the value
to be passed is in the HL pair, and then you must execute the
special JUMP instruction, JP 2714D.

The following BASIC/machine-language program illustrates the
point. This one counts and prints integer values. The counting opera-
tion, however, is done at the machine-language level, while the
PRINTing is done in BASIC. That sort of scheme calls for passing
the current count from machine language to BASIC.

29

123 0 42 10 123 LD HL(COUNT) ;FETCH COUNT TO HL

123 3 35 INC HL :COUNT BY ONE
123 4 34 10 123 LD (COUNT),HL ;SAVE COUNT AT END OF PROGRAM
123 7 195 154 10 JP 2714D ;RETURN VALUE TO BASIC

0 REM >k k COUNT AT MACHINE LEVEL >k %
10 POKE 16526,0:POKE 16527,123
20 FOR {=0 TO 11:READ D:POKE 31488-1,D:NEXT |
40 PRINT USR(X);
50 FOR T=0 TO 10:NEXT
60 GOTO 40
100 DATA 42,10,123,35,34,10,123,195,154,10,0,0

The BASIC portion of the program loads the machine-language
program and then enters an endless loop between lines 40 and 60.
That loop calls and prints a value from the machine-language sub-
routine and then does a short time delay at line 50. The time delay
simply slows down the operation so you can observe it better. The
only way to end the program is by striking the BREAK key.

The most important part of the machine-language routine is the
last line. This is the mandatory instruction—the one that makes
it possible to assign the number in the HL pair to the USR function
and return to BASIC.,

The count, itself, is saved at two bytes of memory just above the
main program listing. Saving the count in that fashion is absolutely
necessary, because most of the Z-80 registers are affected by the
return to BASIC, and a count residing in them will be lost. The
two zeros at the end of the DATA listing initialize that “counter”
to zero but only when the program is first RUN. After that, the
“counter” carries the current count.

In summary:

1. A value to be passed from machine language to BASIC must
reside in the Z-80’s HL pair at the moment the return occurs.

2. When carrying a value back to BASIC, the return must be
carried out by executing a JP 2714 (decimal).

3. The value assigned to the USR function may be treated as any
BASIC value.

PASSING VALUES BACK AND FORTH

Some of the most useful kinds of BASIC/machine-language pro-
grams are those that pass one value from BASIC, perform some
mathematical or logic operations on the value, and return the result
to BASIC. The back-and-forth process is really just a matter of com-
bining the principles described in the two previous sections of this
chapter: passing values from BASIC to machine language, and pass-
ing values from machine language to BASIC.

100

The following program illustrates the point. This program allows
you to enter any integer between —32,768 and 32,767, The integer
is passed to the machine-language part of the program and a 2-byte
version of the number is returned. In other words, the program
carries out the tedious task of converting a standard decimal number
into its 2-byte decimal form—something that frequently troubles
programmers who are working with BASIC and machine language
together.

123 0 205 127 10 START: CALL 2687D ;VALUE TO HL PAIR
123 3 17 25 123 LD DE,PHASE ;SET PHASE ADDRESS
123 6 26 LD A,(DE) ;FETCH CURRENT PHASE
123 7 254 0 CP O ;LERO PHASE?
123 9 194 17 123 JP NZ,MSB ;IF NOT, THEN MSB
123 12 60 INC A ;SET FOR PHASE 1
123 13 18 LD (DE),A ;SAVE PHASE
123 14 195 20 123 JP DONE ;AND JUMP TO DONE
123 17 61 MSB: DEC A ;SET FOR PHASE 0
123 18 18 LD (DE),A ;SAVE PHASE
123 19 108 LD LH ;MSB TO L REGISTER
123 20 380 DONE: LD H,0 ;CLEAR H REGISTER
123 22 195 154 10 JP 2714D ;RETURN TO BASIC
WITH VALUE

0 REM >k CONVERT TO 2-BYTE DECIMAL %k
10 POKE 16526,0:POKE 16527,123
20 FOR 1=0 TO 25:READ D:POKE 31488+ 1,D:NEXT |
40 CLS:INPUT “ENTER STANDARD DECIMAL (—32768 TO 32767);N
50 IF N<{—32768 OR N>32767 THEN 40
60 PRINT N"=";
70 FOR PH=0 TO 1:PRINT USR(N);:NEXT PH
80 PRINT:PRINT
90 INPUT“STRIKE ENTER KEY TO DO AGAIN";55:GOTO 40
100 DATA 205,127,10,17,25,123,26,254,0,194,17,123
110 DATA 60,18,195,20,123
120 DATA 61,18,108,38,0,195,154,10,1

As in all previous examples the BASIC portion of this program
both loads the machine-language portion of the program and per-
forms some important i/o operations in its own right. The machine-
language program is loaded by line 20, calling on the DATA items
in lines 100, 110, and 120. The actual working part of the program
begins at line 40 and loops endlessly between that line and line 90.
The machine-language subroutine is called by the PRINT USR(N)
statement in line 70.

The general idea of the program is to enter a decimal integer
in response to the INPUT statement ENTER STANDARD DECI-
MAL (—32768 TO 32767). Line 50 goofproofs that entry, making
sure the value passed to the machine-language subroutine is within
its acceptable range (a matter described earlier in this chapter).

101

For the sake of doing some tidy formatting, line 60 reprints your
entry and inserts an equal sign. The semicolon preceding the equal
sign suppresses the usual line-feed/ carriage-return operation, allow-
ing the results of the machine-language program to be printed on
that same line.

The FOR...NEXT statements in line 70 imply a two-phase
operation, as far as the execution of the machine-language program
is concerned. This two-phase operation allows PRINTing of the
msb of the result on the first pass and PRINTing of the Isb on the
second pass.

The same value is passed to the machine-language program in
both phases—the value of N entered in response to the INPUT mes-
sage. The machine-language program passes back a value two
different times. The first value passed back to BASIC is the msb of
the 2-byte decimal number, and the second value in the sequence
is the 1sb of that number.

So if you respond to the INPUT message with a 15360, the
PRINTed results on the screen look like this: 15360=60 0. And,
sure enough, the 2-byte decimal version of 15360 (the beginning
address of the TRS-80 video memory) is 60 0, a figure used in several
previous demonstrations.

The main point of the demonstration lies in the first and last
lines of the machine-language portion of the program. The first
line does the CALL 2687 (decimal) to insert a value passed from
BASIC into the Z-80’s HL pair. And the last line does the JP 2714
(decimal) to carry a value from machine language to BASIC.

SAVING BASIC/MACHINE-LANGUAGE
PROGRAMS ON CASSETTE TAPE

One of the advantages of using BASIC and machine-language
programs together is that they are so easy to save on cassette tape.
Since the machine-language part of the scheme is loaded from
BASIC, the entire program can be saved on tape via the usual
CSAVE command. Likewise, the programs can be loaded into the
TRS-80 by means of the usual CLOAD command.

In short, there is no need to fool around with SYSTEM commands.
As far as the TRS-80 is concerned, the programs are purely BASIC
programs, and they can be treated as such.

There is much more to be said about this matter of linking
BASIC and machine-language programs with the USR function.
This chapter has presented the most fundamental parts of the mat-
ter. The next chapter deals with special procedures and applications.

102

CHAPTER 6

Manipulating BASIC-Loaded,
USR-Linked Programs

The USR function allows the user to link together BASIC and ma-
chine-language programs. Chapter 5 describes the process in general
terms, and the demonstrations show how values can be passed be-
tween the BASIC and machine-language portions of the program.

This chapter, like Chapter 5, deals with BASIC-loaded, USR-
linked programs, but from a somewhat more sophisticated point of
view. Here, for instance, you will see how it is possible to enter the
machine-language portion of a program at any desired point, and not
just from the lowest address. This principle then leads to the notion
of calling any one of a number of different machine-language pro-
grams.

To put some finishing touches on the subject you will see how to
delete the loader portion of a BASIC program, leaving behind just
the operational part of BASIC and the machine-language subrou-
tines.

SPECIFYING ENTRY POINTS FOR USR-LINKED PROGRAMS

When writing the BASIC portion of a program that links BASIC
and machine language via the USR statement, it is necessary to spec-
ify the starting address of the machine-language routine before exe-
cuting the USR function. That starting address is POKEd into 16526
and 16527 as a 2-byte version of the address. See Chapter 5 if you
have any doubts about the meaning of this important principle.

The POKE statements, however, do not necessarily have to point
to the very beginning of a machine-language subroutine. They can
point to any valid entry point—any valid point in the subroutine that
will execute a set of instructions without causing confusion.

103

The practical significance of this notion is that you can write ma-
chine-language subroutines that do a number of different tasks and
you can call from BASIC any one you choose. It’s all a matter of set-
ting the desired entry point at addresses 16526 and 16527.

Before getting into the details of a program that illustrates this
point, it is instructive to view it from a general angle. The program
you will enter is a rather simple counting program. It uses a 46-byte
machine-language routine to count upward or downward between
0 and 9. It can also preset the count to 0 or 9. All operations are under
the control of the BASIC portion of the program—the machine-lan-
guage portion simply carries out the decisions made at the BASIC
level.

Table 6-1 summarizes the four entry points for the machine-lan-
.guage program. The first column describes the operation, the second
specifies the starting address of that operation in standard decimal
form, and the third column specifies the starting addresses in a 2-byte
decimal format.

Table 6-1. Summary of the Entry Points for the Machine-Language
Program in Table 6-2

Entry-Point Address
2-Byte Decimal
Function Standard Decimal MSB LS8
ZERO the counter 31488 123 V]
Preset to NINE 31493 123 5
Count UP 31501 123 13
Count DOWN 31513 123 25

Getting to any one of the four valid entry points of the machine-
language program is a matter of first setting the entry-point address
and then doing the USR function. To zero the counter, for example,
the BASIC program should include the sequence: POKE 16526,0:
POKE 16527,123. A USR function appearing anytime after that will
cause the system to enter the machine-language program at address
31488, thus causing the counter to reset to zero.

Presetting the counter to 9 is a matter of specifying the entry point
for that particular operation: POKE 16526,5:POKE 16527,123. A
USR function appearing anytime after that will call the preset-to-9
operation at the machine-language level.

In a similar fashion, doing a POKE 16526,13:POKE 16527,123 sets
the entry point for counting upward, and doing a POKE 16526,25:
POKE 16527,123 sets up a down-counting operation.

The standard Radio Shack literature says that Level II BASIC can
call just one machine-language subroutine from the USR function.

104

It might be more precise to say that Level II BASIC allows the as-
signment of just one USR-linked operation at any given time. There
is nothing to prevent you from specifying different starting points as
the program progresses, thus achieving the effect of accessing any
number of machine-language entry points you choose.

Table 6-2 is the machine-language portion of this counting pro-
gram. The entry points are at ZERO, NINE, UP, and DOWN. It is
a rather tightly structured program that shares two other routines
with each of the four entry points: NEXT and DOIT.

Referring to the machine/assembly program in Table 6-2, the
NEXT routine saves the current count from the accumulator in mem-
ory location 31535, then does a jump to routine DOIT. DOIT con-
verts the count to an ASCII character code, prints the result in the
screen upper left-hand corner, and returns operations to BASIC.

NEXT and DOIT are accessed from all four of the program’s main
entry points: ZERO, NINE, UP, and DOWN. ZERO sets the accu-
mulator to 0, NINE sets it to 9, UP either increments the accumu-
lator or resets it to 0 after showing a 9, and DOWN either decre-
ments the accumulator or resets it to 9 after showing a 0.

Enter the machine-language program at ZERO, and you will see
a 0 printed on the screen. Enter at NINE, and you will see a 9. Enter
at UP or DOWN, and you will see the character increment or decre-
ment within the counting range of 0 through 9.

The BASIC portion of this program must do two things: it must
enter the machine-language portion of the program and control the
selection of the entry point. The most important feature, as far as the
present discussion is concerned, is the adjustment of the entry point
just prior to executing a USR function. Here is the BASIC program:

10 FOR 1=0 TO 47:READ D:POKE 31488+ 1,D:NEXT |
20 DATA 62,0,195,7,123

22 DATA 62,9,50,47,123,195,37,123

24 DATA 58,47,123,254,9,210,0,123,60,195,7,123

26 DATA 58,47,123,254,0,202,5,123,61,195,7,123

28 DATA 33,0,60,58,47,123,198,48,119,201,48

100 RL=16526:RH= 16527

110 CLS

120 IF PEEK(14463)=0 THEN 120

130 C$=INKEY$

140 IF C$<>"" THEN R$=C$

150 IF R$="71" THEN L=0

160 IF R$="N" THEN L=35

170 IF R$="Y" THEN L=13

180 IF R$="D" THEN L=25

190 IF NOT(R$="Z" OR R$=="N" OR R$="U" OR R$="D") THEN 120
200 POKE RLL:POKE RH,123

210 X=USR(X)

220 FOR T=0 TO 10:NEXT T

230 GOTO 120

105

2ISve OL Niniay! 13¥ 102 oy €l
YILOVAVHD LN’ Vv'(1H) a1 6Ll sy €zl

1128V OL I¥3ANOD! asy'v aav 8y 861 ey etl

INNOD INZWIND HDI3d! (INNOD)Y a1 €l Ly 8§ oy £zl
03alA 40 l¥VIS Ol INIOd! O3QIATH a1 H1oa 09 0 ¢¢ FANE XA
IXaN o1 4wnf! IX3aN df €el £ S61 e €71
JOLYINWNOOY INIWAUDIA 3813¢ v D3aa 19 g€e ecl
ININ Ol 4Wnf ‘0s dF ININ Z df ggl & 20C 0¢ €zi
EINNOD WAWINIW! 0d> 0 ST 8z €zl

INNOD INIWIND HOL3A (INNODYVY a1 NMOQ €Tt Ly 8§ sz el
IXaN oL dwnr! 1X3AN df €Tl L G6lL e gel
JOLYINWNDIOY INIWIADNF v ONI 09 12 gzl
0o¥3Z OL dwnr ‘os 4F 0Q¥3Z DN df ggL 0 102 8t ezl
LINNOD WAWIXYW! as 43 6 ¥SZ 91 €Tl
JOLYINWNDOY OL INNOD! (INNODYY a1 dn €Tl LV 8% [B A
110a oL 4wnf? 1ioq dr €l LE G6l oL €ct

INNOD Ol1 20V avo¥ v(INNOD) a1 IXAN €Tl 4y 0§ L €Tl
JOLYINWNDDY 3HL NI 6 QVOT s’y ai HANIN 6 29 g €l
IXaN 04 oL dwnf! IX3IN dl £zl L S6l z £zl
YOLYINWNDOV IHL O¥3zZ! o'v a1 *Qu3z o 29 0 ¢zl
juswiwo) Stuowouyy apo) do ssaippy

auynoy Jejunon pajjosuoy sy Joy wesbosd sbenbuei-aulew ‘g-9 djqel

106

Lines 10 through 28 make up the machine-language loader. The
procedure is identical with the one described in Chapter 5, with line
10 doing the actual loading operation and the DATA in lines 20
through 28 carrying the instruction bytes that are justified in Table
6-2.

So the loading of the machine-language portion of the program is
completed at line 28.

Line 100 points to the USR entry-point registers. Those points,
here assigned variable names RL and RH, are the same ones used for
all USR-linked programs. Note, however, that the address they are
to specify is not indicated—not yet, anyway.

Lines 120 through 140 make up a key-depression sensing opera-
tion: one that responds as long as a key is being depressed. Recall
the details from Chapter 3. Whenever a key is being depressed, its
string value is assigned to variable R$ at line 140.

Lines 150 through 180 decode four different key depressions, as-
signing some numerical values to variable L. As long as the Z key is
being depressed, for instance, variable L takes on the value of zero.

Those values of L represent the Isb of the entry-point address for
the machine-language subroutines; and they are assigned to the
USR’s entry-point register at line 200. So if you are depressing the Z
key, line 200 performs this operation for you: POKE 16526,0;:POKE
16527,123. This is precisely the set of operations required for starting
the USR-called machine-language routine at address 31488—the en-
try point for presetting the counter to zero. Depressing the N, U, or
D keys set up things in the same way, pointing to the entry points for
NINE, UP counting, and DOWN counting, respectively.

It is not only important to set up the proper entry points to be as-
signed at line 200, but in a program of this sort it is equally important
to eliminate key depressions that will provide other, unwanted val-
ues for L. You certainly do not want to specify some undetermined
entry points, and that is the purpose of line 190.

Without line 190, you could depress any other key and end up
specifying an entry point having an Isb of some undetermined value;
and that could be disastrous, sending the program to some strange
point in the system and, most likely, crashing the whole program out
of existence.

IMPORTANT

BASIC programs that call multiple entry points in a machine-language
program must be structured in such a way that unwanted entry points
cannot be specified.

107

Line 210 calls the specified machine-language routine. When the
routine is completed, line 220 does a short time delay. The delay
simply makes it easier for you to watch the counting operation. Line
230 returns operations to the key-entry point at line 120.

Summarizing the main points of this discussion:

1. Write a machine-language program, keeping close track of the
addresses of all possible entry points.
2. Write a BASIC program that:
a. Loads the machine-language portion.
b. Controls the entry-point addresses before doing the
USR function.
c. Eliminates the possibility of specifying undetermined
machine-language entry points.

Once this is done, you can enter the machine-language portion of the
program at any desired point, creating the effect of having a system
that can call any number of entry points or machine-language sub-
routines.

DELETING THE MACHINE-LANGUAGE LOADER

Through all of the BASIC/machine-language programs presented
thus far, the machine-language portion is loaded from BASIC (via
DATA lists). Once the machine language is loaded, the loader line
and DATA lists perform no useful function—all subsequent opera-
tions at the BASIC level involve doing some controls and implement-
ing the USR function to call the machine-language subroutines that
are stored in protected memory space.

Once the machine-language portion of the program is loaded from
BASIC, the lines of the BASIC program devoted to that process can
be deleted. In the example offered in the previous section of this
chapter, for example, you can do a RUN to get it loaded; and once it
begins running, you can do a BREAK, and then DELETE 10-28.
That DELETE command will eliminate the loading portion of the
BASIC program, leaving the operational part intact. And as long as
the machine-language program still resides in its place in protected
memory, the program can be run at your heart’s content.

It is a good idea to retain the loading portion of a BASIC/ma-
chine-language program until you have a chance to test and debug
it. But once you are confident it is running as it is supposed to run—
and the machine-language portion is loaded into protected memory
space—you can wipe out the loading portion of the BASIC program
without altering the operation of the program in any way.

Suppose that you have worked out the program presented in the
previous example. It is working to your satisfaction, but you'd like

108

to tidy up the matter by deleting the loading portion. RUN the full
program one more time, just to make sure the machine-language pro-
gram is, indeed, properly loaded into protected memory, then do a
BREAK to interrupt the program at the BASIC level.

Next, CSAVE the entire program on cassette tape (or disk), and
then DELETE 10-28. A LIST will show that the loading part of the
program is gone; but when you do a RUN you will find the program
running just as well as it did before. (The idea of saving the program
on tape before deleting the loader makes it possible for you to enter
the entire program-including the machine-language loader--at any
later time.)

Doing those BREAKs and DELETEs as described here is rather
inelegant, however. An elegant way to get rid of the loader at the
BASIC level is to write an appropriate DELETE statement right
into the BASIC program. Write in a line that will delete the machine-
language loader immediately after that loading operation is done.

In the previous example you can insert a new line:

30 DELETE 10-30

Insert that statement into the program, and it will delete the loader
and line 30 as well, after the loading operation is done. Try it.

Get the loader back into your system. (Hopefully, you have saved
it on tape or disk as suggested earlier; otherwise you will have to
type in the loading line and DATA lines again.) Then insert the sug-
gested DELETE 10-30 at line 30.

Save on tape or disk, then do a RUN. After a short delay, caused-
by the loading operation, the system will return a READY? and, in-
deed, the program is ready to run. From that point on, the loader will
be missing from the BASIC program, but the whole thing does its in-
tended job quite nicely.

In fact, you can do a NEW, and the machine-language portion of
the program will be unaffected. It will still be residing there in pro-
tected memory space, and you can write another BASIC program
that calls it.

DELETEing the machine-language loader, either manually from
the keyboard or automatically by a built-in DELETE statement,
creates a much neater BASIC program. But there are certainly some
more compelling reasons for doing the DELETE.

One good reason for DELETEing the machine-language loader is
to make more room in the BASIC text memory for elaborate BASIC
operations. This is especially desirable in cases where the machine-
language portion of the program is a rather extensive one as well.
Why bother keeping all those DATA lists in BASIC memory after
they have performed their intended task?

109

Another reason for getting rid of the BASIC-level. machine-lan-
guage loader is that some machine-language programs are intended
to manipulate any kind of BASIC program you might want to enter.
A line-renumbering utility, for example, can be loaded as a machine-
language subroutine from BASIC. The program you want to renum-
ber, however, will be an entirely different one. So the idea is to write
a machine-language loader in BASIC, do the loading operation, and
then completely DELETE the BASIC portion of the program. After
that, any USR-oriented set of operations will call up the subroutine
for you, presumably doing things such as renumbering the resident
BASIC program.

Finally, the ability to DELETE BASIC-level, machine-language
loaders makes it possible to create some rather elaborate machine-
language programs in a bottom-up fashion. Machine-language rou-
tines can be loaded and tested piecemeal, moved around in the pro-
tected memory at will, and merged with other machine-language
routines. This feature is the subject of the next section in this chapter.

BUILDING MACHINE-LANGUAGE PROGRAMS
FROM THE BOTTOM UP

For a beginner, writing machine-language programs can be a dif-
ficult and emotionally trying task. It takes a whole lot of experience
to feel at ease with this sort of programming, and anyone not feeling
at ease ought to use as many programming aids as possible.

The idea of writing USR-called, decimal-oriented programs can be
of some help for beginners. And one way to take advantage of USR-
called machine-language programming is to write and test basic ele-
ments of the routines in a piecemeal fashion, working on one element
until it is working and then moving to another element. Once the
elements are all entered and tested, they can be strung together to
make up one large program--a machine-language program that might
appear far too imposing to tackle in one shot.

The following operations demonstrate this particular approach to
building a machine-language program. The general idea is to com-
pose a USR-called subroutine that draws a large rectangle on the crt
screen. The procedure will be to write, enter, and test the drawing
operations for the four sides separately, and then assemble things to
come up with one machine-language program for doing the job.

Drawing the Top of the Rectangle

Here is a machine-language and BASIC program for drawing a
white line across the top of the screen:

123 0 33 0 60 BORDER: LD HL,15360D ;POINT TO START
123 3 62 63 LD A,63D ;SET END

110

123 5 189 TOP: CP L ;AT END?

123 6 202 20 123 JP Z,NEXT1 ;JUMP IF SO

123 9 54 131 LD (HL),131D ;ELSE DRAW LINE
123 11 44 INC L ;SET NEXT SPOT

123 12 195 5 123 Jp TOP ;DO MORE DRAWING
123 20 201 NEXT1: RET ;RETURN TO BASIC

0 REM >k} BORDER-DRAWING DEMO 3 >k
10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123
50 REM kk LOADER FOR TOP >k k
55 FOR 1=0 TO 14:READ D:POKE 31488 +I,D:NEXT 1|
57 POKE 31508,201
100 REM >k k CALLING PROGRAM X %
110 POKE 16526,0:POKE 16527,123
120 Cis
130 X=USR(X)
140 GOTO 140

Referring to the machine-language portion of the program, it be-
gins by loading the lowest video memory address into the HL regis-
ter pair. This points to the upper left-hand corner of the screen, the
starting point of the line marking the top of the rectangular figure to
be drawn.

Decimal 63, marking the endpoint of the TOP line, is loaded into
the accumulator, and then the content of the L register is compared
with that number. If the numbers do not match, presumably because
the content of L is less than that of the accumulator (and the draw-
ing operation isn’t done), graphic code 131 is drawn on the screen at
the point indicated by the HL pair. Then the L register is incre-
mented one space, and control returns to the TOP routine.

The routine continues drawing graphic 131 until the L register is
incremented to 63. At that point the TOP-line drawing is done, and
control is sent to memory location 31508 (or 123 30 as expressed as
a 2-byte decimal address).

That NEXT1 location contains a RETurn instruction, but only
temporarily. When it is time to add a routine to draw the bottom of
the rectangular figure, it will begin at that point. For testing pur-
poses, however, this address returns control to the BASIC calling
program.

Note that there are some unused bytes between the last instruction
in the TOP routine and the beginning of NEXT1. It is generally con-
sidered good programming procedure to allow a few unused bytes
between the various elements of a machine-language program. The
same idea applies to designating line numbers for BASIC programs.
In either case the rationale is to allow some room for expanding the
routine without having to adjust addresses (or line numbers in
BASIC) from that point through the end of the program.

So it is advisable to leave some unused memory locations in a ma-

m

chine-language program. Just be sure, however, to use an appropri-
ate JUMP instruction to pass over those blank spaces. That’s done in
this case with the JP Z, NEXT1 instruction.

The BASIC part of the program shows the object codes as a DATA
line. Those codes are entered into protected memory space by line
55. Note that the loading begins at address 31488 (or 123 0 in a 2-
byte decimal format).

Line 57 is necessary in order to answer the jump-over-blank-places
operation. You could add a bunch of zeros to the DATA list, and ad-
just the FOR. . .NEXT statement in line 55 accordingly. But that
would place an unnecessary burden on the DATA list. The statement
in line 57 is thus added separately.

Lines 100 through 140 execute the program. If all is going well to.
this point, doing a RUN will load the machine-language segment and
execute it, drawing a clean line across the top of the screen. Because
of the tight loop built into line 140, you have to strike the BREAK
key to get something else going.

Anything wrong with your program will show up right away. If
the program blows up, it is short enough to enter again from scratch
—after, of course, you work out the bug that caused the blowup. Or
you can save the program on tape before doing a RUN. That way
you can reload it in a few moments, make the fix and give it another
try—all in a fairly short period.

Drawing the Bottom of the Rectangle

After entering and debugging the first element of the program, it
is possible to move to the second phase without disturbing the good
stuff that is already in place. Here are the machine-language and
BASIC routines for drawing the bottom portion of the rectangle:

123 20 33 192 63 NEXTI: LD HL,16320D ;POINT TO START

123 23 62 255 LD A255D ;SET END

123 25 189 BOT: CPL ;AT END?

123 26 202 40 123 JP Z,NEXT 2 ;IF SO, GET OUT
123 29 54 176 LD (HL),176D ;ELSE DRAW LINE
123 31 44 INC L ;SET NEXT SPOT

123 32 195 25 123 JP BOT ;DO MORE DRAWING
123 40 201 NEXT2: RET ;RETURN TO BASIC

0 REM k% BORDER-DRAWING DEMO 3k %k
10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123
12 DATA 33,192,63,62,255,189,202,40,123,54,176,44,195,25,123
50 REM k% LOADER FOR TOP >k
55 FOR I=0 TO 14:READ D:POKE 31488 -1,D:NEXT 1|
60 REM sk LOADER FOR BOTTOM 3k
65 FOR 1=0 TO 14:READ D:POKE 31508 +1,D:NEXT |
67 POKE 31528,201
100 REM kk CALLING PROGRAM 3k

110 POKE 16526,20:POKE 16527,123
120 CLs

130 X=USR(X)

140 GOTO 140

The machine-language portion of the bottom-line-drawing rou-
tine isn’t much different, in principle, from the TOP routine already
entered and tested. The only difference here is the position of the
line and, of course, the addresses of the machine-language program-
ming.

The BASIC part of the program still contains elements of the TOP-
drawing routine, but the DATA line (line 12) is added for the bot-
tom line. Line 57 has been deleted from the program, because the
end of TOP now calls the beginning of BOT—or at least it will when
the two routines are merged later on.

At any rate the BOT routine begins at address 31508, as indicated
by its loader in line 65. A RETurn is inserted at 31528, making it
possible to get out of the routine at the point the next element of the
program will begin.

Note in line 110 that the starting point of the USR-called routine
is different. Instead of starting at address 31488, it begins at 31508,
That means the USR function calls the new BOT routine instead of
the TOP routine.

Run the program as shown here and you should see a white line
across the bottom of the screen.

Merging the Two Elements of the Routine

The following BASIC program shows how it is possible to merge
the TOP and BOT routines into one. The BASIC program has been
cleaned up a bit, and the USR-called starting point is set back to the
beginning of the machine-language program, to address 31488. So
the two sections of the machine-language program automatically run
in succession, responding to a single USR function in BASIC.

0 REM >k)k BORDER-DRAWING DEMO 3k k

10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123
12 DATA 33,192,63,62,255,189,202,40,123,54,176,44,195,25,123
50 REM kk LOADER FOR TOP AND BOTTOM k

52 FOR 1=0 TO 14:READ D:POKE 31488+-1,D:NEXT |
54 FOR 1=0 TO 14:READ D:POKE 31508 -1,D:NEXT |
56 POKE 31528,201
100 REM >k k CALLING PROGRAM k
110 POKE 16526,0:POKE 16527,123
120 CLS
130 X=USR(X)
140 GOTO 140

In a sense this is not a very efficient program scheme. Leaving
some unused memory space between the TOP and BOT routines, for

113

example, makes it necessary to use two different loading operations
in the BASIC program. But writing efficient or elegant programs is
not the point of the present discussion. The main idea is to demon-
strate how USR-called programs can be composed by sections, then
worked together to make up a single program scheme.

Now it is time to add in some more programming to draw the two
sides of the rectangle.

Drawing the Sides and Merging Again

Here is the programming for drawing the left side of the rectangle.
The machine-language portion deals only with the left-side drawing
operation, but the BASIC part of the matter includes the TOP and
BOT programming already developed. You will note, however, that
the USR function calls only the left-drawing part of the machine-
language programming; this lets you concentrate on the new prob-
lems that might arise.

123 40 30 0 60 NEXT2: LD HL,15360D ;POINT TO TOP
123 43 54 191 LEFT: LD (HL),191D ;DRAW SEGMENT
123 45 125 LD AL ;FETCH LSB

123 46 198 64 ADD A,64D ;ADD 64

123 48 218 55 123 Jp C,MOREI] ;JUMP IF DONE
123 51 m D LA ;SAVE NEW 1SB
123 52 195 43 123 JP LEFT ;DO AGAIN

123 55 124 MORE1: LD AH ;FETCH MSB

123 56 254 63 CP 63D ;DONE?

123 58 202 70 123 JP Z NEXT3 ;IF SO, GET OUT
123 61 36 INC H ;SET NEW MSB
123 62 46 0 tD L0 ;RESTART 1SB
123 64 195 43 123 JP LEFT ;DO AlLL OVER AGAIN

0 REM k% BORDER-DRAWING DEMO 3k %
10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123
12 DATA 33,192,63,62,255,189,202,40,123,54,176,44,195,25,123
14 DATA 33,0,60,54,191,125,198,64,218,55,123,111,195,43,123,124,254,63,202,70,
123,36,46,0,195,43,123
50 REM 3k LOADER FOR TOP AND BOTTOM >k %
52 FOR I=0 TO 14:READ D:POKE 31488 +1,D:NEXT 1|
54 FOR 1==0 TO 14:READ D:POKE 31508 +1,D:NEXT |
60 REM >k %k LOADER FOR LEFT 5k 3k
65 FOR 1==0 TO 26:READ D:POKE 31528 -1,D:NEXT 1
67 POKE 31558,201
100 REM >k % CALLING PROGRAM 3k
110 POKE 16526,40:POKE 16527,123
120 CLs
130 X=USR(X)
140 GOTO 140

DATA line 14 in the BASIC programming contains the machine-
code instructions, and they are loaded by the statements in line 65.
Line 67 inserts a RETurn into the machine-language program, forc-

114

ing the scheme to return to BASIC after drawing the left-side line on
the screen. If there are any problems with the program, they will
certainly show up at this point, giving you a chance to remedy the
trouble without affecting the other parts of the program—the parts
you have presumably tested before.

Assuming that the left-line drawing operation works, the next step
is to add in the right-line drawing sequence.

123 70 33 63 60 NEXT3: LD HL,15423D ;POINT TO TOP
123 73 54 191 RIGHT: LD (HL),191 ;DRAW SEGMENT
123 75 125 LD AL ;FETCH LSB

123 76 198 64 ADD A,64D ;ADD 64 TO LSB
123 78 218 85 123 JP C,MORE2 JUMP IF DONE
123 31 1m LD LA ;SAVE NEW LSB
123 82 195 73 123 JP RIGHT ;DO AGAIN

123 85 124 MORE2: D AH ;FETCH MSB

123 86 254 63 CP 63D ;DONE?

123 88 202 100 123 JP Z NEXT4 ;IF SO, GET OUT
123 91 36 INC H ;SET NEW MSB
123 92 46 63 LD L,63D ;RESTART LSB
123 94 195 73 123 JP RIGHT ;DO ALL OVER AGAIN

0 REM >k BORDER-DRAWING DEMO *k %
10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123
12 DATA 33,192,63,62,255,189,202,40,123,54,176,44,195,25,123
14 DATA 33,0,60,54,191,125,198,64,218,55,123,111,195,43,123,124,254,63,202,70,
123,36,46,0,195,43,123
16 DATA 33,63,60,54,191,125,198,64,218,85,123,111,195,73,123, 124,254,63,202,100,
123,36,46,63,195,73,123
50 REM >k LOADER FOR TOP AND BOTTOM %
52 FOR I=0 TO 14:READ D:POKE 31488+ 1,D:NEXT |
54 FOR I1=0 TO 14:READ D:POKE 31508+!,D:NEXT |
60 REM k> LOADER FOR LEFT 3k k
65 FOR I=0 TO 26:READ D:POKE 31528 1,D:NEXT |
70 REM k3 LOADER FOR RIGHT %k
75 FOR 1=0 TO 26:READ D:POKE 31558+1,D:NEXT |
77 POKE 31588,201
100 REM >k CALLING PROGRAM k¥
110 POKE 16526,70:POKE 16527,123
120 CLS
130 X=USR(X)
140 GOTO 140

The BASIC part of the program is now arranged to call the new
section of the machine-language program—the part that is supposed
to draw the right-side line on the rectangle. Its function is quite simi-
lar to the left-side drawing operation; only the addresses are differ-
ent.

Running that BASIC program should draw the right-side line for
you. And if it works, you are ready to tidy up the BASIC portion of
the program. The BASIC program shown next is cleaned up so that

115

it loads the machine-language programming as efficiently as possible,
given the fact that some blank spaces exist in the memory between
each of the basic sections. Line 110 sets the entry point of the USR
function to the very beginning of the machine-language program. So
when you run the program it will draw the complete rectangle for
you. As usual, you have to strike the BREAK key to get out of the
loop created by the BASIC statement in line 140.

0 REM kk BORDER-DRAWING DEMO X

10 DATA 33,0,60,62,63,189,202,20,123,54,131,44,195,5,123

12 DATA 33,192,63,62,255,189,202,40,123,54,176,44,195,25,123

14 DATA 33,0,60,54,191,125,198,64,218,55,123,111,195,43,123,124,254,63,202,70,
123,36,46,0,195,43,123

16 DATA 33,63,60,54,191,125,198,64,218,85,123,111,195,73,123,124,254,63,202,100,
123,36,46,63,195,73,123

50 REM * %k LOADERS X X

52 FOR I==0 TO 14:READ D:POKE 31488-1,D:NEXT |

54 FOR [=0 TO 14:READ D:POKE 31508 +1,D:NEXT {

56 FOR i=0 TO 26:READ D:POKE 31528 +I,D:NEXT |

58 FOR I=0 TO 26:READ D:POKE 31558 -+1,D:NEXT |

60 POKE 31588,201

100 REM >k 5k CALLING PROGRAM 3k

110 POKE 16526,0:POKE 16527,123

120 CLS

130 X=USR(X)

140 GOTO 140

If this whole rectangle-drawing routine is to be just one element
in a larger program, you can insert a DELETE 0-65 at line 65 in the
BASIC program. On running the program, then, the BASIC section
will first load the machine-language programming, then delete all
the DATA lines and loading statements. You can always call the rec-
tangle-drawing routine at a later time by doing the BASIC sequence
in lines 100 through 140.

Some Comments About Bottom-Up Programming

The expression bottom-up programming refers to a programming
technique whereby the program is developed by one section at a
time. Each section, or module, is capable of standing alone, and it is
thoroughly debugged before the programmer goes on to the matter
of developing another module. And when all the modules have been
thus written and debugged, they are tied together to make up one
big program. Chances are good the final version will work rather
well, because the separate modules have been tested beforehand.
This was the technique used for building up the rectangle-drawing
routine.

While this bottom-up technique has the advantage of letting the
programmer work with the program in a piecemeal fashion, dividing

116

the job into a number of manageable parts, it does have its disadvan-
ages. The most common disadvantage is that the final program is in-
efficient in terms of the amount of memory it uses. It is possible, for
instance, to write the rectangle-drawing program using a whole lot
less memory space.

An alternative to bottom-up programming is a technique known
as top-down programming. In this case the entire program is devel-
oped from beginning to end. The procedure calls for some careful
planning ahead of time and a form of thinking that is outside the
scope of our present discussion. The result, though, is a program that
is generally shorter than a version developed by a bottom-up pro-
cedure.

But there is something else you can do at this point to tighten up
the programming. Suppose you have developed a USR-called ma-
chine-language program, using the bottom-up, module-oriented tech-
nique used in the previous example—the one that draws a rectangle
on the screen. You have the program working and you are satisfied
with the operation of the thing.

In the process of working out the program you have learned some
things about getting the job done, perhaps learning some of those
things by making some mistakes. That being the case, you are in a
good position to rewrite the program in a more efficient manner.

Looking over that program, you should be able to see that the top
and bottom drawing sections of the machine-language listings are
quite similar. The same happens to be true for the left and right
drawing parts of the program. If nothing else, you should be able to
condense the program to at least two basic sections, instead of four.

That is just an example of what you can do with programs devel-
oped by the bottom-up process. Chances are good that any program
developed in this fashion can be tightened up if you apply a bit of
thought to the matter.

The basic idea here is that you can take advantage of what you've
done while perfecting the bottom-up procedure, thus avoiding a lot
of hard-to-find mistakes in a more elegant revision.

Tightening Up the Program

Here is a condensed version of the border-drawing program. The
machine-language portion is shown in Table 6-3. It uses only 65
bytes of protected memory space, beginning at address 31488. The
earlier version also started at that address, but it ate up 100 bytes of
memory.

The revised BASIC portion of the scheme loads this new machine-
language program, then executes it from lines 100 through 140.

Load the BASIC program, CSAVE it, and then give it a try. If
there are any errors in the scheme, you will have a recorded copy to

117

NIVOVY MVia aNV* TMVIQ dr €L vy S6L W £l
INIOd ONILYVIS 1353 a1 a1 01 19 €Tl
IDVId MIN 139 3513 H ONi 9¢ 09 ¢gci
OS 41 Naniay’ Z 13¥ 00z 65 €Cl

aNoa! age dd €9 95T LS €21

30V1d 40 8SW HOLa¥ H'v a1 ‘FUOW yel 96 €Tl
NIVOV MVia aNv’ TMVY¥a df orA N 4 A .1} €5 £zl
3DVid MIN 3AVYS 3$13° v'1 al Lt [74
INOQ 41 dwnr! JYOW'D df €Tl 99 8iT 6y €Ul

DV1id MIN 13§ ar9'v aav ¥9 861 Ly €Tl

30Vid 40 €S1 HO13d v a1 74} 9F €Ti
YILOVIVHD MVi¥a! alsl’(tiH) at TMYEQ 16t ¥§ v ETL
NIVOV Mvia’ LMYYQ dl €el LE S6L ly €zt

INIOd M3IN 138! 1 ONI Y oy €el
IN3WOIS Mvig 3813 9'(1H) a1 (43} 68 €L
OS 41 Niniay! Z i3y 00z L1 X A
LINIOdaNg! 1dD ‘LMvVEa 681 LE €L

DlIsvd OL Niniz¥’ 134 102 9€ €ZL
Ials 1431 Mvid’ IMYYa 11IVD €ZL v¥ S0T ge €¢l
INIOd 1353 138¢ qaeo'a ai €9 9 e €zl
1HOI¥ dOL OL INIOdJ! dez¥S1H a1 09 £9 €€ 87 ¢l
34Is LHON Mvia’ TMYIa 1IVO XA 4 {114 §¢ Tl
INIOd 1353¥ 138* 0'd a1 09 €2 €Tl
¥INJOD dO1 OL INIOd! aovest’iH ai 09 0 €€ 0z €2t
WOL108 MViQ! LMVIQ TIVD £ZL L 60T Ll £TL
YILOVIVHO 13s! agil’e ai 9LL 9 St ezl
INIOdaN3 13s? asse'v at §6T 9 gl gzl
4IN¥OD WOL1L108 OL INIOd! aozesL'tH ai €9 6L €€ oL €21
dO1 MVig’ LMVYQ 11v2 €zl LE S0T L gl

¥ILOVEVHO 13§° alel's a1 et 9 g ezl
INIOdaN3 13§° acy’y a1 €9 29 € €Tl
¥IN¥OD dOL OL INIOd? ao9esL K al H3IAN08 09 0 ¢¢ 0 €zl
juswiwo) siuowauy apop do SSaIppyY

T'A ‘'OW3d ONIMVYA-¥3Q¥08 103 weiboid abenBuet-aulypey g-9 djqel

118

work with. And even if there aren’t any errors, you will have a copy
that is ready to go anytime you need it.

0
10
12
14
16
18
50
60

100
110
120
130
140

REM >k BORDER-DRAWING DEMO, V.2 %k %k

DATA 33,0,60,62,63,6,131,205,37,123,33,192,63,62,255,6,176,205,37,123
DATA 33,0,60,6,0,205,44,123,33,63,60,6,63,205,44,123,201
DATA 189,200,112,44,195,37,123

DATA 54,191,125,198,64,218,56,123,111,195,44,123

DATA 124,254,63,200,36,104,195,44,123

REM >k k LOADER *k %k

FOR I=0 TO 64:READ D:POKE 31488-1,D:NEXT |

REM >k CALL BORDER *k %

POKE 16526,0:POKE 16527,123

CLs

X=USR(X)

GOTO 140

SUMMARY

The main point of this section is to illustrate how it is possible
to use BASIC/machine-language programming to develop useful,
USR-called subroutines. The discussion uses one specific example,
drawing a rectangular figure, but the general procedures are appli-
cable to any sort of routine.

So
of a

L

2.

you can grasp the general ideas without thinking only in terms
rectangle-drawing program, here are the basic points:

Divide the machine-language task into small elements that are
each capable of doing something meaningful.

Compose a machine-language program for one of those ele-
ments.

. Compose a BASIC program that both loads the machine-lan-

guage program and executes it in a meaningful way.
Debug that portion of the scheme, getting it to work as you
want it to work.

. Repeat Steps 2 through 4 until all the smaller elements of the

machine-language program have been tested.

. Write a BASIC program that loads all the smaller elements of

the machine-language program and executes them in some
meaningful way.

. Work out any bugs and, if possible, tighten up the BASIC por-

tion of the program.

. If you wish, insert a BASIC line that will DELETE the loader-

related lines of the BASIC program, leaving just the USR-func-
tion part.

. If you wish, use the working machine-language program to re-

write a tighter, more elegant version of it. Revise the BASIC
portion accordingly.

119

If you save everything on cassette tape or disk as you go along, a
blowup won’t cost you a whole lot of time and effort. In the case of
very complex machine-language programs you can divide the task
into several main sections, and then divide those sections into even
smaller subsections. You can build and test the subsections, one at
a time, and then begin fitting them into the larger scheme.

The idea is to take advantage of the fact that BASIC-loaded, USR-
called subroutines can be saved on tape, disk, or a line printer rather
easily. And since the BASIC part of the program coordinates much
of the machine-language programming, it is relatively easy to change
things around as you go along.

Why not dream up some machine-language tasks of your own,
then test your understanding of this procedure? If you have done
little or no machine-language programming before, this is the most
suitable approach for you. It lets you get around some of the more
tedious machine-language tasks, passing them to a more familiar
BASIC format.

120

CHAPTER 7

Hexadecimal Programming With T-BUG

All of the discussions and demonstrations in Chapters 2 through
6 deal with the TRS-80 system in a decimal format. Chapters 2, 3,
and 4 consider some BASIC operations with the video memory, key-
board “memory,” and user’s memory—all in the decimal-oriented
TRS-80 BASIC. Chapters 5 and 6 blend BASIC and some machine
language, but since the machine-language programs are entered
from BASIC in those two chapters, the whole business is decimal
oriented.

You probably are aware, however, that the decimal number sys-
tem is not the simplest system for writing machine-language pro-
grams, and that fact made the BASIC-loaded programs in Chapters
5 and 6 a bit tedious to write. All those conversions and 2-byte
decimal numbers are quite troublesome. The hexadecimal number
system is far more compatible with machine-language programming.

Unfortunately, the TRS-80 keyboard and display mechanisms
are not set up to handle hexadecimal notation directly; they are set
up for decimal-oriented BASIC programming. For this reason some
other software mechanism has to be added to provide a hexadecimal
i/o format. One such mechanism is Radio Shack’s T-BUG monitor
and debugging tool—the subject of this chapter.

T-BUG is available from Radio Shack (catalog No. 26-2001) at
a reasonable price. One side of the T-BUG cassette tape loads for
Level I machines, and the other loads it for Level II versions. Both
work with any system of 4K or more. The T-BUG discussions in
this book, however, assume that you are using a Level II system
with 16K of RAM or more.

21

THE T-BUG ENVIRONMENT

The T-BUG monitor/debugging tool is, itself, a machine-language
program. It is loaded into the TRS-80 via the SYSTEM command,
and any memory space you have protected with MEMORY SIZE?
is not relevant—T-BUG loads right through anything in its path.

Loading T-BUG From lis Tape

Set up the T-BUG tape for loading; then, from BASIC, type and
ENTER the command SYSTEM. This will bring up the *? prompt
symbols. Respond to them by typing and ENTERing the file name
TBUG. The tape will load, showing the usual flashing asterisk
near the upper right-hand corner of the screen.

When T-BUG is fully loaded, you will see the *? symbols again.
Respond by typing and ENTERing the / (slash) symbol. This
should bring up the prompt symbol for the T-BUG monitor: a
pound sign.

T-BUG is thus ready to go. The useful work you can do from that
point will be described shortly.

Going Between T-BUG and BASIC

T-BUG users often find it necessary to go from the T-BUG moni-
tor to BASIC, or vice versa. Sometimes this is done on purpose; often
it happens accidentally.

Going from T-BUG to BASIC can be useful at times. As you will
see in Chapter 8 it is possible to write very limited BASIC programs
for working the two in conjunction with one another. Other times
a mistake in the machine-language program written through T-BUG
will cause a “crash” that returns the system to BASIC (as indicated
by the READY message and less-than prompt symbol).

There are two basic ways to get out of the resident T-BUG moni-
tor and back to BASIC. One way is to depress the RESET push
button on the back of the TRS-80 keyboard unit. Another way to
accomplish the transfer is by answering the T-BUG prompt symbol
by typing J0000 (it is not necessary to strike the ENTER key at
the end of this entry).

In either case the system is returned to the BASIC monitor without
disturbing the T-BUG programming in the least.

But once you get to BASIC from T-BUG you will probably want
to get back to T-BUG again. To get from BASIC to T-BUG (as-
suming T-BUG is still resident from a previous tape-loading opera-
tion), simply type and ENTER the SYSTEM command, and then
respond to the *? characters by typing and ENTERing /17312.
That will bring up the T-BUG monitor’s prompt symbol—a pound
sign. Then youre back in business with T-BUG.

122

There are two circumstances, however, that prevent a return to
T-BUG from BASIC. One is a catastrophic “blowup” of the program
at the T-BUG level. Such a catastrophe generally loads the screen
with a lot of meaningless characters and often ends up displaying
the MEMORY SIZE? message. In such a case the T-BUG monitor,
itself, is messed up, and trying to get back to it by doing a /17312
from the SYSTEM mode will not improve matters at all.

A second set of circumstances that will prevent a return from
BASIC to T-BUG is one where you write some BASIC programs
into the memory that is normally allocated for the T-BUG monitor.
As described in Chapter 8 it is possible to write short BASIC
programs of a certain nature without disturbing the T-BUG monitor,
but you have to know what you are doing. Generally speaking,
writing BASIC programs while the T-BUG monitor is loaded will
mess up T-BUG; and doing a /17312 from SYSTEM will cause
a “crash.”

Naturally, turning the TRS-80 power switch off and on will kill
the T-BUG monitor, too. But perhaps this should go without having
to say it.

For the time being, at least, avoid going from T-BUG to BASIC
and writing some BASIC programs. And if a T-BUG generated
program should blow up and the system returns to BASIC, doing
a /17312 from SYSTEM might get you back into T-BUG quite
nicely. But if T-BUG doesn’t come back or it begins doing strange
things for you, you will have to load the T-BUG monitor from the
tape again.

SUMMARY

To get from T-BUG to BASIC:
a. Work the RESET push button
or
b. Answer the # prompt symbol with a J000O0,

To get from BASIC to T-BUG:
>SYSTEM <do ENTER>
%?P/17312 <do ENTER>

Organization of the T-BUG Monitor

The T-BUG monitor occupies the user’s memory space, between
4380H and 497FH (decimal 17280 through 18815). Comparing
these figures with a Level 1I memory map, you will find T-BUG is
resident some 50 bytes above the beginning of the space that is
normally allocated for BASIC program text. Then it runs 15360

123

TOP END OF PROGRAM RAM AK SYSTEM - 4FFFH

. 16K SYSTEM - 7FFFH
FIXED BY MEMORY CAPACITY: 29K SYSTEM - BFFFH

e LB SYSTEM - FFFFH

- PROGRAM RAM |
ag3cH T-BUG STACK l SEE DETAILS
REGISTER-SAVE AREA " INTABLE 72
4825H
T-BUG MONITOR
4380H
PN UNLESS SPECIFIED OTHERWISE

IN A PROGRAM, THE PROGRAM
STACK BUILDS DOWNWARD
FROM 4288H (BASIC 1/0 BUFFER SPACE)

Fig. 7-1. General memory map of T-BUG monitor.

bytes upward from there. See the T-BUG monitor’s memory map
in Fig. 7-1.

That entire memory space for T-BUG is not wholly occupied
with the machine-language programming for it. Near the top of
that space, locations 4825H through 483CH, is the so-called register-
save area. These 18 addresses are used for saving the content of
the Z-80’s 16 working registers whenever a T-BUG operation does
things calling for saving them on a temporary basis. The two addi-
tional addresses are not used, appearing at either end of the register-
save area.

The memory space at the very top of the T-BUG’s memory map
is devoted to its own stack. When T-BUG is loaded into the TRS-80
it automatically sets the monitor’s stack pointer to address 4980H.
And when the stack is used during the running of the T-BUG
monitor it builds downward toward the top end of the register-
save area.

Incidentally, the T-BUG monitor stack and the SYSTEM stack
are two entirely different things. The monitor stack, just described,
is used exclusively by the monitor; you, the programmer, should
not attempt to work with it directly.

124

The SYSTEM stack, on the other hand, is the one available to the
programmer during the execution of a T-BUG generated, machine-
language program. This is the one that builds downward when
your program uses instructions such as nested CALLs, PUSHes,
and POPs.

The T-BUG monitor automatically places the SYSTEM stack
at 4288H—right smack in the TRS-80’s i/o buffer for BASIC opera-
tions. This is one reason why you must be careful about trying to
use BASIC and a SYSTEM-oriented machine language at the same
time. Again, Chapter 8 will show how you can get out of the
situation by relocating the SYSTEM stack: getting it out of the
i/ o-buffer space.

T-BUG OPERATIONS

Most introductory discussions of the T-BUG monitor describe
the eight available commands as separate identities. Most T-BUG
users, especially beginners, are far more interested in knowing how
to do things than brief descriptions of the commands. So the fol-
lowing discussion tells how to do things with the T-BUG monitor,
leaving basic command definitions to a summary on p. 140.

Examining Memory Locations

It is possible to examine the contents of all the TRS-80 memory
locations from BASIC. Something such as PRINT PEEK (address)
will do the job, where address is a decimal number within the sys-
tem’s memory map. The result is another decimal number that
represents the 1-byte contents of that address.

You can do the same thing much easier, and in a hexadecimal
format, from the T-BUG monitor. Just answer the # prompt symbol
by striking the M key, followed by four hexadecimal characters
representing the address location. The content of that address, in a
hexadecimal format, will then appear to the right of the number you
just entered. (You will not have to strike the ENTER key. The
ENTER key is rarely needed for entering information in T-BUG.)

Suppose you want to examine the contents of memory location
0000H. Answer the # prompt symbol by striking keys MO0000.
Striking the M key puts the monitor into its Memory mode, and
striking the zero key four times in succession specifies address 0000.
Do that, and you will see this sort of display on the screen:

M 0000 F3

The machine has printed the pound sign, F3, and spaces. The main
idea, however, is that the content of memory address 0000H is F3
(for whatever that might be worth to you).

125

Now strike the ENTER key, and the display will look like this:

M 0000 F3
0001 AF

The second line is showing address G001H and its contents—AF.
Strike the ENTER key several more times in succession, and the
display grows in this fashion:

M 0000 F3
0001 AF
0002 C3
0003 74
0004 06
0005 C3

What you are doing here is examining the contents of successive
memory locations, beginning with the one specified after striking
the M key. The project can run indefinitely this way; if your hand
holds up long enough, you can theoretically examine the entire
ROM and RAM in your TRS-80.

If you want to skip to another place in memory and examine
the contents from that point, you must first get out of the memory
mode and back to the monitor. To get to the monitor, strike the X
key, instead of the ENTER key. That will bring up the pound-sign
prompt symbol again. Then strike the M key, followed by the four-
digit hexadecimal address of the location you want to examine.
Looking at the contents of successively higher locations is a simple
matter of striking the ENTER key for each one.

Incidentally, you might notice that the backspace (left-arrow) key
doesn’t work as it does in BASIC. If you strike a wrong key while
specifying an address for examining memory locations, striking the
backspace key doesn’t change anything. The only way to correct a
typing error at this point is to strike the X key to return to the
T-BUG’s monitor mode, and then start over by striking the M key
and, hopefully, the correct four-place hexadecimal address.

Here are a few notes that summarize the procedure for examining
the contents of any memory location in the TRS-80:

1. Answering the # prompt symbol by striking the M key puts
T-BUG into its Memory mode.

2. The Memory mode can be entered only from the monitor mode.
To get to the monitor mode from any other command mode,
including Memory, strike the X key.

3. To specify the starting address of a memory-examining se-
quence, strike the M key, followed by a 4-byte hexadecimal
address:

Maaaa

126

where the a terms represent the four address bytes or hexa-
decimal characters.

4. To view the contents of successive memory locations, strike the
ENTER key for each one.

5. Escape from the Memory mode and return to the monitor mode
at any time by striking the X key.

6. Correct address-entry errors by returning to the monitor mode
(striking the X key) and starting over again.

Altering the Contents of RAM Locations

From BASIC it is possible to alter the contents of any RAM lo-
cation by doing something such as POKE address, data, where
address is the decimal-format address of the byte to be changed
and data is the byte to be entered into that address. The data must
also be in a decimal format.

In T-BUG the content of any RAM address can be changed from
the Memory mode just described. Your thinking of this sort ought
to be limited to address locations above those of the T-BUG monitor:
from 4980H to the top of the RAM space for your system. Altering
the contents of memory locations in the T-BUG monitor or below
risks some program catastrophes.

At any rate, get the system into the T-BUG Memory mode by
striking the M key and typing the address of the location to be
altered. The system will respond as though you want to simply
examine the contents of that location.

Instead of simply striking the ENTER key to view the contents
of the next-higher address, strike two keys that specify the one byte
of hexadecimal data you want to enter into that address. If you
have thus typed some valid data, the system will print the new data
to the right of the old data, and then automatically examine the
contents of the next memory location for you.

Here is an example:

M 4A00 2E CD
4A01 FE

In this example the machine printed the pound sign to indicate
the system was in the monitor mode. The user struck the M key to
get into the Memory mode, then struck the 4A00 keys in succession
to specify the starting address. The system then inserted the spaces
and printed the current contents of address location 4A00. In this
example the contents happen to be 2E, but you might see any two-
character code when you try this for yourself.
At that point the display looked like this:

M 4A00 2E

127

But then the user struck the CD keys to change the contents of that
address from 2E to CD. The system responded by inserting a space
and the revised contents of that same memory location. After that
the system automatically displayed the next-higher address and its
current data. There is no need to strike the ENTER key after al-
tering the contents of a memory location—the T-BUG does that
for you.

Now, if you want to alter the contents of address 4A01, just strike
the two keys representing the new contents. The system will print
your new data to the right of the old (to the right of the FE in this
case) and jump down to display the next address location and its
current contents.

But if you want to leave the contents of address 4A01 unchanged,
strike the ENTER key to get to the next address location.

This is how machine-language programs are written from T-BUG.
They are written from the Memory mode, examining successive
memory locations and altering them as necessary to build up the
program you want.

The following is a short programming sequence that loads this
set of Z-80 instructions:

4A00 CD C? 01 CALL O1C9H ;CALL CLS FUNCTION
4A03 C3 03 4A JP 4A03H ;LOOP TO SELF

M 4A00 01 CD
4A02 FF €9
4A03 5E O
4A04 88 C3
4A05 1A 03
4A06 09 4A
4A01 21

Answering the # prompt symbol with M4A00 put the system into
the Memory mode, beginning at address 4A00H. The current con-
tent was 01, but I wanted it to be CD, the first instruction in the
program. So I struck the CD keys, and the system automatically
displayed the contents of address 4A01—a 21. I wanted a C9 in that
location, so I struck those keys. I continued the process until the
last instruction (4A) had been entered into address location 4A05.
That completed the programming phase of the operation. It marked
the end of my 6-byte program.

To see whether or not that program has been entered as expected,
you can examine the six locations again from the Memory mode.
But in order to get back to address 4A00 to do that sort of job,
you must first exit the ongoing scheme by striking the X key, then
answering the # prompt with an M and address 4A00. By doing

128

that and striking the ENTER key several times in succession, the
display will look like this:

M 4A00 CD
4A01 C9
4A02 01
4A03 C3
4A04 03
4A05 4A

Sure enough, this Memory-examining operation confirms that the
6-byte, machine-language program has been entered in addresses
4A00 through 4A05.

In summary, to write a machine-language program from T-BUG:

1. Get into the Memory mode by striking the M key, followed
by the address (in hexadecimal) of the starting point of your
program.

2. Respond to the machine’s printing of the address and its con-
tents by striking the two keys representing the data you want
to enter at that address.

3. If you make a mistake in specifying the data, strike the X key
to get out of the current Memory mode, then reenter the
Memory mode by striking the M key and specifying the ad-
dress where the mistake occurred. Alter the data accordingly.

Executing Programs From T-BUG

One of the most attractive features of T-BUG is that you can
actually run the programs you write with it. The more sophisticated
Editor/ Assembler (described in later chapters) cannot do that. You
can thus compose a machine-language program as described in the
previous section and execute it on the spot, testing for any possible
errors. And if you handle the execution properly, T-BUG will still
be resident in your system, and you can go to the Memory mode
to correct any errors you discover.

But just as a person ought to learn how to stop a car before
learning how to make it go, a T-BUG user ought to know how to
stop the execution of a machine-language program before trying
to run one. Without knowing how to “put on the brakes,” the pro-
gram can zip through its end and wander into sections of memory
where there is no rational programming, thus crashing the whole
thing.

When running the T-BUG monitor, the least troublesome way to
conclude a program is by inserting a Break at the address marking
the point where you want the program to stop its execution. Sup-
pose, for instance, you want a program to run between addresses

129

4A00 and 4AF6, inclusively. Before executing that program (a pro-
cedure described shortly), you should insert a T-BUG Break at the
address immediately following the final instruction in the program.
In this case the final instruction resides at address 4AF6; so the
Break should be located at 4AF7.

How do you specify a Breakpoint? Get into the T-BUG’s monitor
mode, as indicated by the pound-sign prompt symbol, then strike
the B key, followed immediately by the Breakpoint address. To in-
sert the Break at address 4AF7, the presentation on the screen looks
something like this:

B 4AF7
#

The T-BUG monitor prints the pound signs and inserts the spaces.
All you have to do is answer that first pound sign with B4AF7.

Now, when you execute the program from the beginning (address
4A00 in this example), it will run until it reaches your specified
Breakpoint—address 4AF7. At that time program control will break
away from your machine-language program and return to the
T-BUG monitor. The system will return the # symbol, waiting for
your next instruction.

Here is an example to illustrate the point: get into the Memory
mode, and load a program that turns out looking like this when
you examine it . . .

M 4A00 CD
4A01 €9
4A02 01
AAD3 21
4A04 20
4A05 3C
4A06 36
4A07 58

Strike the X key to get into the monitor mode, then strike B4A08
to place a Break at address 4A08—the address following the end
of the program residing in locations 4A00 through 4A07.

The main point of this particular discussion is the placing of the
breakpoint. But to test its effectiveness you ought to execute the
program. Do that by answering the # with J4A00.

Immediately after typing that particular sequence of characters,
the screen will clear, an X character will appear near the middle
of the top line on the screen, and the T-BUG’s prompt symbol will
appear at the upper left-hand corner of the screen.

If things look this way on your screen, you know that the pro-
gram has been executed to the breakpoint and that it returned
to the T-BUG’s monitor for you.

130

The program in this example is responsible for clearing the
screen and printing the X character. T-BUG executed those instruc-
tions when you typed in J4A00, then the Break set at address 4A08
marked the end of the execution and returned the system to its
monitor mode.

The breakpoint will remain in that same place until you either
write some new instructions into location 4A08 or do a Fix operation
(an operation described a bit later).

In the process of illustrating the use of T-BUG’s Break function
you have also initiated the execution of a program. That was the
J4A00 keyboard operation.

So the simplest way to begin execution of a program from T-BUG
is by answering the monitor’s # symbol with a J, followed by the
starting address, in a hexadecimal format, of course. To execute
the previous demonstration program, for instance, you did a J4A00
—a Jump to the starting address of the program.

SUMMARY
Jssss begins execution of a program at address ssss.
Beeee specifies the end, or breakpoint, of a program at address eeee.
The breakpoint must be specified before the program is executed, and it
must be specified at the address following the last instruction to be

executed.

The system automatically returns to the T-BUG monitor on finding the
breakpoint.

Actually, the Break feature of T-BUG is intended to be a de-
bugging tool and not an endpoint marker for all machine-language
programs. Machine-language programs are normally self-contained;
they do not break away to some other monitor such as BASIC or
T-BUG. Finished machine-language programs, in other words, have
loops that keep them running indefinitely.

Machine-language programs that run as endless loops do not have
to conclude with a Break function in T-BUG. A Break, under those
conditions, is really irrelevant as far as marking the end of the
program is concerned—the program has no end. The very nature
of endlessly looping machine-language programs prevents operations
from zooming into some unspecified memory space.

It is possible and, indeed, a good idea to Break machine-language
loops for troubleshooting purposes; but what if you want to run
the program in its normal fashion? What if you want to run the

131

program without Breaking it? And, finally, how do you get back to
the T-BUG monitor from an endlessly looping machine-language
program?

Well, the only way to get out of a machine-language loop is by
working the RESET push button on the back of the TRS-80 key-
board unit. When you are running a machine-language program
in the SYSTEM mode, working the RESET push button immedi-
ately breaks up the program and returns control to the BASIC
monitor.

Working the RESET push button while running programs in
T-BUG also returns control to BASIC. As described earlier in this
chapter you can then get back to the T-BUG monitor by entering
SYSTEM, followed by /17312.

Here is a program that enters an endless loop:

M 4A00 CD
4A01 C9
4A02 01
4A03 21
4A04 20
4A05 3C
4A06 36
4A07 58
4A08 C3
4A09 08
4A0A 4A

You can specify a Break at the next-higher address, 4A0B, but it
won’t do any good. The last three bytes of the program cause it to
loop around to itself, effectively creating a tight program loop that
can run endlessly. There is no way the program can jump out to
any unspecified memory locations. In short, the program will never
see any Break that might be specified at address 4A0B.

Execute that program from its beginning by doing a J4A00. You
will see the X character printed near the middle of the top line on
the screen, but this time you won't see the T-BUG’s pound-sign
prompt character. Also notice that the keyboard is “dead.” Nothing
that you try at the keyboard, including striking the BREAK key,
has any effect whatsoever.

The program is tied up in an endless loop. The only way out of.
the situation is to work the RESET push button. That will return
the system to BASIC; but then you can get back to the T-BUG
monitor by entering SYSTEM and answering the *%? symbols by
entering /17312. The appearance of the pound sign near the upper
left-hand corner of the screen confirms a return to T-BUG. Now
you can run the program again, modify it, write a new program, or
do whatever you want from T-BUG.

132

Debugging Programs From T-BUG

So far in this chapter you've seen how to load the T-BUG monitor,
examine the contents of memory locations, alter the contents to
write a program, execute a program, and get out of a program that is
being executed from T-BUG. These principles are adequate for
writing just about any kind of machine-language program, but they
assume any troubles are fairly easy to find and remedy. Unfor-
tunately, machine-language bugs are not always so easy to locate;
that’s where the debugging power of T-BUG really pays off.

One debugging tool already described is the Break operation.
You can insert a Break at the end of any complete instruction se-
quence in a machine-language program. Then, when you execute
the program, it will run until it encounters your specified Break
address. At that time the system returns to the T-BUG’s monitor
mode, and you are free to examine or alter the contents of some
memory locations. More importantly in many instances, you can also
examine the content of the Z-80’s internal registers. More about
that in a moment.

The main point is that you can stop and freeze a machine-language
program at any point specified by the Break operation, thus giving
you an opportunity to check out the program’s current status.

To get rid of a Break you have specified at some earlier time,
simply get into the T-BUG’s monitor mode and strike the F key.
This does a “Fix” on the Breakpoint, restoring any legitimate ma-
chine-language instructions that should normally appear there.

T-BUG can handle just one Break operation at a time. If you
specify more than one Breakpoint, only the last one will work, and
you will end up with meaningless instructions inserted at the
memory locations for previously specified Breaks.

IMPORTANT

After specifying a Break at one point in a machine-language program,
always do a Fix before specifying a different Breakpoint.

You don’t have to keep track of the address specified for an
earlier Break operation. Since the system is supposed to handle just
one Breakpoint at a time, it keeps track of the address in the T-BUG
stack. Doing a Fix (striking the F key) automatically calls up the
Breakpoint address and inserts the legitimate instructions it replaced
when you originally specified the Break.

As implied earlier in this discussion, one of the good reasons for

133

inserting a Break into a machine-language program is to give you
a chance to examine the contents of the Z-80’s internal registers.
On encountering the Break the system will leave the machine-
language program and return to the T-BUG monitor mode, as indi-
cated by the # prompt symbol. To view the contents of the Z-80’s
internal registers, simply respond to the # by striking the R (Reg-
ister) key.

On striking the R key, a set of 12 hexadecimal figures pop onto
the screen. Those figures represent the contents of the 12 main Z-80
registers as shown in Fig. 7-2.

A F B C
D E W L
A F B ¢
D E H L
X X Y W
(MSB) {LSB) (MSB) (LSB)
SP SP PC PC
(MSB) (LSB) (MSB) (LSB)

Fig. 7-2. Screen format for Register operation.

After displaying the contents of the registers in this particular
fashion, the system returns to the T- BU(‘ momtor mode, awaiting
further instructions from you.

The following demonstration is a rather extensive one, but it
walks you through just about all of the T-BUG principles described
thus far.

The assembly-language version of the program for this demon-
stration appears in Table 7-1. It is basically a time-delay program.
On running it you should see a white rectangle printed immediately
near the upper left-hand corner of the screen. Then after a brief
time delay (about 3; of a second) a second white rectangle appears
near the middle of the top line on the screen.

The first three instructions initialize the program, clearing the
screen with a CALL 01C9H, loading the rectangle character code

134

Table 7-1. Assembly-Language Version of the Demonstration Program

Address Contents Mnemonics Comment
4A00 cD C? 01 START: CALL 01C9H ;CLEAR THE SCREEN
4A03 3E BF LD A,BFH ;CHARACTER TO ACC
4A05 32 00 3C LD (3COOH),A ;PRINT FIRST SPOT
4A08 06 FF LD B,OFFH ;SET B TO FF
4A0A QOE FF SETC: LD C,OFFH ;SET C TO FF
4A0C oD DECC: DEC C ;COUNTDOWN C
4AQD 20 FD JR NZ,DECC ;IF NOT DONE, COUNT AGAIN
4AOF 05 DEC B ;COUNTDOWN B
4A10 20 8 JR NZ,SETC ;#F NOT DONE, START AGAIN
4A12 32 20 3C LD (3C20H),A ;PRINT SECOND SPOT
4A15 18 FE SELF: JR SELF JUMP TO SELF
(BF) into the A register, and printing that character at video

memory location 3CO0H.

The

next six lines, addresses 4A08 through 4All, perform the

short time delay. Those lines simply count down the BC register
pair from FFFF to 0000, where the B register is the Isb for the
countdown operation.

The

penultimate instruction prints the second white rectangle

at video memory location 3C20. And the last line simply “buzzes”

to itself, thus creating an endless loop at the end of the program.
Load the program from T-BUG, beginning at address 4A00. After

that, examining the program should turn up this sort of display:

M
4A01
4A02
4A03
4A04
4A05
4A06
4A07
4A08
4A09
4A0A
4A0B
4A0C
4A0D
4AQE
4AOF
4A10
4A11
4A12
4A13
4A14
4A15
4A16

4A00 CD
c9
01
3E
BF

135

This is the 17-byte program as it appears in T-BUG. Any data in
address locations above 4A16 or below 4A00 is not relevant.

Get back into the T-BUG monitor mode by striking the X key,
then run the program by doing a J4A00. This starts the program
from the very beginning.

If all is going well, it should print that white rectangle near the
upper left-hand corner of the screen, do a 34-second time delay, and
then print the second rectangle near the middle of the top line on
the screen. The T-BUG prompt symbol should not appear when
the program is done, for the simple reason that the program, as
presented here, is never done. The looping statement at the end
of the program is an endless one.

The only effective way to break out of the program (without
destroying it) and return to the T-BUG monitor is by working
the RESET push button and then entering SYSTEM, followed by
entering /17312.

For testing purposes, the matter of RESETing to BASIC and
then calling SYSTEM again is a very troublesome affair. To make
things easier, specify a T-BUG Break at the beginning of the final
looping instruction in the program—at address 4A15.

After inserting the Break at that point, execute the entire program
with a J4A00. The program will run as before, but it automatically
Breaks to the T-BUG monitor after printing the second rectangle.
The first rectangle will be cleared from the screen, but only because
the monitor does that clearing operation every time it is called. The
fact that the first rectangle figure disappears has nothing to do with
your program, itself.

To get rid of the Break at the end of the program. Strike the F
key to do a Fix. Now, when you run the program with a J4A00, it
will run and enter the endless loop again. Yes, you have to do a
RESET, SYSTEM, /17312 to get back to T-BUG again.

Referring to the assembly-language version of the program in
Table 7-1, you can see that there is nothing but register-loading
operations taking place between the instructions in locations 4A03
and 4A0A. So by the time the program reaches the instruction in
4A0C, register A should have a BF in it, while registers B and C
should be loaded with FF.

To test the operation of the program to that point, specify a
Break at 4A0C, and then do a J4A00. The program will execute
right up to address 4A0C, then return to the T-BUG monitor. Then,
to see the contents of the registers, strike the R key.

Comparing the register display with the format shown in Fig.
7-2, you should see a BF in the A register and FFFF in the BC
register pair. The content of the other registers shown on the screen
is not relevant at this point.

136

If anything has been wrong with the initialization phase of the
program, you would be able to spot the trouble by examining the
registers at this place in the program. That being the case, you
would make the necessary changes in the program and try the
operation again.

Do a Fix to remove the Break when you are ready to proceed
to the next phase of this demonstration. If you wish, you can double-
check the overall operation by running it from the start again—by
doing a J4A00,

Now, here is something rather tricky, but meaningful: insert a
Break at 4A0D. This will stop the program just after the C register
is decremented at 4A0C. Do a J4A00; and when the system returns
to the T-BUG monitor, do an R to view the contents of the registers.
Now the C register should show an FE, instead of an FF. Why?
Because the Break is located after the point in the program that
calls for decrementing the C register by 1. It has counted down
from FF to FE.

Here’s the fun part. Do a J4A0C. That will rerun the program
from the point where the C register will be decremented again.
When the system returns to the monitor mode (the Break is still
set at 4A0D), examining the registers will show that the C register
has counted down again—counted down to FD.

Run through that sequence several times: doing a J4A0C and
examining the content of the C register. Each time you do that, the
number in that register should get one unit smaller. In effect, you
are watching the C-register down-counting operation. If you do a
J4A00—start the program from the beginning—you will find the C
register starting again from FE.

Do a Fix to get rid of the current breakpoint, and set a new
Break at 4A12. Run the whole program by doing a J4A00; and when
the system breaks to the T-BUG monitor, strike the R key to look
at the registers. Can you explain why the BC register pair now
contains 0000?

Doing a Fix gets everything back to normal.

Through all of this, you should be getting at least an inkling of
how T-BUG can be used for composing, debugging, and running
machine-language programs.

Altering the Contents of the Registers

A more subtle debugging tool involves altering the contents of
the Z-80’s registers at some point during the execution of a program.
You have already seen how it is possible to interrupt the execution
of a program with a Break function and then view the contents
of the registers by doing a Register function.

Before running the program again, it is sometimes useful to alter

137

the contents of the registers first. Recall that the contents of the
7-80’s registers are saved in the T-BUG'’s register-save area. Every
time the system is returned to the monitor mode, the current con-
tents of the Z-80’s registers are saved in that area—and that's what
you see displayed on the screen whenever you do the Register
function.

Fig. 7-2 outlines the memory map for the register-save area in
greater detail than the general memory map in Fig. 7-1 does.

Table 7-2. Register-Save Area Addresses

Register Address Register Address
A 482EH A 4826H
8 4830H B’ 4828H
C 482FH c’ 4827H
D 4832H D’ 482AH
E 4831H E' 4829H
H 4834H H 482CH
L 4833H v 482BH.
IX (msb) 4836H 1Y (msb) 4838H
1X (Isb) 4837H 1Y (Isb) 3837H
SP (msb) 483AH PC (msb) 483CH
SP (Isb) 4839H PC (Isb) 483BH

Suppose, for some reason, you have interrupted the execution
of a machine-language program and you want to set the HL register
pair to BF10, where BF is the msb. That can be done as though
you were writing a program at the addresses reserved for the HL
pair in the register-save area. To get the BF into the H register,
do an M4834 (note from Fig. 7-2 that 4834H is the address of the H
register-save area). And after the system prints the current contents
of 4834H, strike the BF keys. After that, the system will bring up
the contents of the next address location, 4835. But you want to
access 4833—the register-save location for the L register. So strike
the X key to get back to the monitor, do an M4833, followed by a 10.

Now, when you do a Register function, you will see that the HL
pair is set to BF10.

Of course, it would be easier to access the lower-addressed L-
register location first, then let the system access the higher H-register
location for you. But the main point is that you are free to alter
the contents of the registers, using the ordinary T-BUG addressing
and data-changing technique. The addresses of the register-save
area, specified in Fig. 7-2, are your guide.

One of the most compelling reasons for tinkering around in the
register-save area is to set the program counter (pc) registers to
some specified point. Such an operation is indispensable when you

138

want to resume the execution of a program without resorting to a
Jump function.

The pe register in the Z-80 carries the address of the next instruc-
tion to be executed. Thus, tinkering with the pc register’s contents,
it is possible to specify some new starting point in the program—
then use the Go function to begin execution.

The Go function is called by striking the G key, but it is offered
in the Radio Shack literature with some clearly stated reservations:
You must know what you are doing to use it. You must know where
the pc register is pointing at the time. That you can determine by
examining the pc register via a Register function; and if you want
to alter the starting point, you can use the Memory function for
the pc register addresses to do the job. Then you can execute the
operations by striking the G key.

Saving T-BUG-Generated Programs On Tape

Machine-language programs generated by T-BUG functions can
be saved on cassette tape by doing:

P bbbb pppp eeece name

where

bbbb is the beginning address—the lowest address of the machine-
language program,

eeee is the highest-used address in the program,

pppp is the entry point for the machine-language program—
usually, but not necessarily, the same address as the be-
ginning address,

name is the file name, composed of one to six alphanumeric
characters.

To save the program in Table 7-1 under the file name of DELAY,
for example, set the recorder to its RECORD mode and strike the
following keys:

P4AQ04A164A00DELAY

and strike the ENTER key. The system will respond to this Punch
operation by inserting the appropriate spaces for you. The display
on the screen will thus look something like this:

P 4A00 4A16 4A00 DELAY
The recorder will begin running as soon as you terminate the
instruction with an ENTER. If your file name happens to have six
or more characters, the recorder will start after you strike the key for

139

the sixth character in the file name—you won’t have to strike the
ENTER key in that case, and any characters beyond the sixth one
in the file name will be ignored.

If, during the process of entering the Punch sequence, you
decide something is wrong with it, you can abort it by striking the
X key. But if you've got as far as the file name, you can abort the
Punch operation only by striking the BREAK key. (The system
would otherwise think the X is part of the file name.)

To load a machine-language program previously saved from the
T-BUG monitor, set the recorder to the beginning of the program,
set it for the PLAY mode, and strike the L (Load) key. The usual
flashing asterisk indicates the loading operation is taking place.

It is also possible to work with machine-language programs not
specifically generated via T-BUG, but such programs must fit into
memory spaces that aren’t occupied by any portion of the T-BUG
monitor (between 4380H and 497FH). Any SYSTEM-oriented tape
can be resident with the T-BUG monitor as long as it loads above
497FH.

SUMMARY OF T-BUG OPERATIONS

Memory (M key)—M aaaa displays address aaaa and its contents
in a hexadecimal format. The data at that address can be altered
by striking the two appropriate keys.

Jump (J key)—] aaaa begins the execution of a machine-language
program at address aaaa.

Break (B key)—B aaaa sets the breakpoint at address aaaa.

Fix (F key)~Striking the J key restores the instructions that were

set aside by the last-specified Break function.

Register (R key)—Striking the R key displays the contents of the
7-80’s internal registers as shown in Fig. 7-1.

Go (G key)—Striking the G key begins execution of a program at
the address contained in the Z-80’s pc registers.

Punch (P key)—P agaa pppp eeee name saves a machine-language
program on cassette tape. The program begins at aaaa, ends at
pppp, has an entry point specified by eeee, and goes by the file
name name.

Load (L key)—Striking the L key loads a tape version of a machine-
language program that was previously saved by a Punch operation.

140

CHAPTER 8

Exploring the TRS-80 With T-BUG

Using the T-BUG monitor brings up the possibility of working
with the TRS-80/Z-80 system in a hexadecimal format-a scheme
that is much easier to use than BASIC and its decimal numbers
for machine-language programming. This chapter considers the
TRS-80 video, keyboard, and user memory from a hexadecimal point
of view.

It is assumed that you already understand some of the funda-
mentals of these topics from a decimal viewpoint, as presented in
Chapters 2, 3, and 4. Here, then, it is possible to concentrate on
T-BUG and hexadecimal notation without having to cover a lot of
material about the structure of the video, keyboard, and user
memory.

THE HEXADECIMAL VIDEO ENVIRONMENT

The TRS-80’s video memory occupies RAM addresses 3CO0H
through 3FFFH. Each of those addresses contains a byte of data
that represents an alphanumeric or TRS-80 graphics code, and each
address “points” to a well-defined position on the crt screen.

Fig. 8-1 shows the addresses in the video memory line up with
endpoint positions on the screen. Address 3C00H, for example, cor-
responds to the first character position on the top line; 3C3FH
corresponds to the last character position on that top line; and
3FFFH represents the last character position on the last line.

There are 40H character positions on each line; so if you want
to position a character near the middle of a given line, you can
figure it is about 20H positions to the right of the first character
position. What, then, is the address in video memory for a character

141

ADDRESS LINE ADDRESS

C00H e e e 3C3FH
3C40H e e 3C7FH
3C80H e e e 3CBFH
3000H e S e e 3CFFH
DOOH P 3D3FH
IDAOH e e e e e 3D7FH
3080H o e G e e 3DBFH
DCOH e e 3DFFH
JEOOH e U 3E3FH
JEAOH o e e e e 3F7FH
JEBOH o 4 e e e 3JEBFH
3ECOH e 3EFFH
F00H e P P S 3F3FH
JFAOH e e e 3FTFH
IFBOH o e 4 e 3FBFH
IFCOH e e 3FFFH
Fig. 8-1. Hexadecimal video y/sereen format.

to be positioned near the middle of the screen? Well, a line near the
middle of the screen begins with address 3E00H, and moving 20H
positions to the right of 3E00H gives us 3E20H. Try it yourself
with Program 8-1.

Program 8-1. A bly language for placing a rectangle of light near the middle

of the video screen/memory.

4A00 CD C9 01 START: CALL OlC9H ;CLEAR THE SCREEN
4A03 21 20 3E LD HL,3E20H 3SET THE VIDEQ POINTER
4A06 36 BF LD(HL), 191D ;PRINT A CHARACTER
4408 18 FE DONE : JR DONE ; LOOP TO SELF

Since Program 8-1 concludes with a “loop-to-self” operation, you will
have to work the RESET push button to get out of it.

If you want to explore the video memory on your own, comparing
the positions indicated in Fig. 8-1 with your own plots, just change
the VIDEO POINTER address for the HL pair in the second line
of Program 8-1. Use any valid video address between 3CO0H and
3FFFH.

Program 8-2 demonstrates the addressing makeup of the video
memory/display in a more dynamic fashion. The first line sets the
starting point of the video memory/display, and the second line
marks the end of it. Load and run the program from T-BUG and
you will see the first group of four lines filled with 0s, the second
group of four filled with 1s, the third group with 2s, and the bottom
group of four lines filled with 3s.

Besides showing that the video memory starts at 3CO0H and ends
at 3FFFH, Program 8-2 shows how the Isb of the 2-byte memory
address cycles between 00H and FFH four different times through
the video memory/display.

142

4A00
4A03
4406
4A08
4A09
4A0A
4A0B
4A0D
4 AQE
4A10
4A11
4A12
4414
4415
4A17

21
[
16
72
79
BD
28
23
18
78
BC
28
14
18
18

Program 8-2. Assembly listing for video memory demonstration.

00 3¢
FF 3F
30

F8

03

Fé
FE

LD HL,3CO0H
LD BC,3FFFH

LD D,48D
AGN: LD(HL),D

LD A,C

cP L

JR Z,MSB
NXT: ING HL

IR AGN
MSB: LD A,B

cPH

JR Z,DUN

INC D

JR NXT
DUN: JR DUN

;POINT TO START OF VIDEO

JPOINT TO END OF VIDEO
;SET FIRST CHARACTER
;PRINT CHARACTER
;FETCH 1SB OF VIDEO
;END OF QUADRANT?

;IF SO,D0 MSB TEST
;SET NEXT VIDEQ POS.
;AND JUMP TO AGN
;FETCH MSB OF VIDEO
;END OF VIDEO?

;IF SO,JUMP TO DUN
;ELSE SET NEW CHAR.
;AND DO AGAIN

;LO0P TO SELF

Then try the program specified here as Program 8-3. This one is an
example of some machine-language animation graphics. It generates
a small white rectangle that bounces back and forth across the
middle of the screen.

The first line of Program 8-3 clears the screen. The second line
sets the initial position of the rectangle at 3EO1H—to a position

4A00
4403
4A06
4A09
4A0B
4A0D
4AQE
4AOF
4A11
4A12
4Al4
4A16
4417
4A19
4A1A
4A1C
4A1D
4ALF
4A21
4A23
4A24
4426
4A28
4A29
4A2C
442D
4A2F
4A30
4A31
4A33
4A35

CcD
21
11
06
3E
12
5b
36
D5
16
iE
1D
20
15
20
Dl
CB
28
3E
BD
20
06
2D
c3
2C
18
AF
BD
20

18

Program 8-3. Assembly listing for a bouncing rectangle of light.

€9 0l
01 3E
00 3E
FF
20
BF

08
FF

FD
F8
40
OE
2F

06
00

0B 44

FA

F5

F5

START: CALL 01C9H
LD HL,3EO0LH
LD DE,3EO00H
LD B,OFFH
LD A,32D
LD(DE), A
LD E,L
LD(HL), 191D
TIME: PUSH DE
LD D,08H
SETE: LD E,OFFH
DECE : DEC E
JR NZ,DECE
DEC D
IR NZ,SETE
POP DE
RUN: BIT 0,8
IR Z,LTLIM
LD A, 3FH
cP oL
JR NZ,ING
LD B,0
DEC : DEC L
IP PLOT
INC: INC L
JR PLOT
XOR A
CP L
IR NZ,DEC
LD B,0FFH
IR INC

PLOT:

LTLIM:

;CLEAR TRE SCREEN

;SET INITIAL POINT

{SET 'OLD' POSITION
;SET RIGHT PHASE

;SET ERASE CHARACTER
;ERASE OLD POINT

;SAVE NEW POINT

{PLOT NEW POINT

;SAVE 'OLD' POSITION
;SET MSB OF DELAY

;SET LSB OF DELAY
;COUNTDOWN LSB

; IF NOT DONE,COUNT AGAIN
;ELSE COUNTDOWN MSB

;IF NOT DONE,COUNT MORE
;ELSE FETCH 'OLD' POS.
;RIGHT PHASE?

; IF NOT,CHECK LEFT LIMIT
;GET RIGHT LIMIT

;AT RIGHT LIMIT?

;IF NOT,THEN INCREMENT
;ELSE SET FOR LEFT PHASE
;DECREMENT TO LEFT
;PLOT NEW POINT

; INCREMENT TO RIGHT
;PLOT NEW POINT

{SET LEFT LIMIT

;AT LEFT LIMIT?

; IF NOT,DECREMENT

;ELSE SET RIGHT PHASE
;AND JUMP TO INCREMENT

143

near the beginning of the middle line on the screen. The HL
register pair is the video pointer, where H is always at 3E, but L
is incremented and decremented between 00H and FFH to make
the figure move back and forth across the screen.

The ASCII character set, already described in Chapter 2 in a
decimal format, applies equally well to machine-language and T-
BUG operations; but, of course, the characters have to be specified
in a hexadecimal form. (See Appendix C.)

The same idea applies to the special TRS-80 graphics characters.
These, too, can be applied to machine-language and T-BUG pro-
grams, in a hexadecimal version, of course. (See Appendix D.)

The main difference between BASIC decimal-oriented video op-
erations and the T-BUG hexadecimal-oriented video is the fact
that the latter cannot deal with cursor-control operations in a mean-
ingful way. Much of the material in Chapter 2 deals with cursor-
control operations, including those specified with decimal numbers
0 through 31, and 192 through 255. None of those are relevant in
machine-language programming. You have to write in your own
cursor controls now.

If, for instance, you print a character at one position on the screen,
and you want to print another character at the next position to the
right, you must insert a machine-language instruction that moves the
character pointer—increments it. And if you want to do a line-
feed/carriage-return operation, you have to write machine-language
instructions that set the character pointer (whatever register pair
you are using to indicate video addressing) to the beginning of the
next line.

This does not necessarily mean that every video printing or
graphic operation has to be written as a tedious, step-by-step,
machine-language program. The TRS-80 contains a number of
ROM functions that can help you with the programming task. It is,
in other words, possible to do some CALLs from machine language
that will cause interesting and highly useful things to happen in the
video environment. Those CALLs, however, mean a lot more when
they are used in conjunction with some keyboard operations.

So the next section in this chapter takes up the subject of the
keyboard environment, as viewed in a hexadecimal format. And
in the process of demonstrating some of the keyboard principles,
you will also uncover some useful video “tricks.”

THE HEXADECIMAL KEYBOARD ENVIRONMENT

Whether working in BASIC or machine language, the TRS-80
keyboard is the system’s primary input control device. The following
material expands on the basic keyboard principles outlined in Chap-

144

ter 3, putting things into a machine-language--oriented, hexadecimal
format.

The Keyboard Matrix

Anytime a single key is depressed, at least one address in the
“keyboard memory” takes on a well-defined, predictable hexa-
decimal number. Table 8-1 illustrates this particular keyboard
principle,

Table 8-1. The Hexadecimal Keyboard Matrix Format

Keyboard Addresses
Data 3801H 3802H 3804H 3808H 3810H 3820H 3840H 3880H
X (
O1H @ H P X 0 8 ENTER SHIFT
)
02H A [Q Y 1 9 CLEAR
r” *
04H B J R z 2 : BREAK
+
08H C K S 3 ; 1
$ <
10H D L T 4 , d
% f—t
20H E M U 5 — &
& >
40H F N v -] . -~
‘ ?
80H F o] w 7 / SPACE

The keyboard addresses, shown along the top of the table, indi-
cate the primary keyboard “memory” locations. The corresponding
data to appear at those addresses is shown running down along the
left side of the table.

So if you happen to be depressing the H key, you will find that
address 3802H contains data O1H. Depressing the V key, however,
turns up data 40H at address 3804H. Each key thus has a specific
address/data combination assigned to it.

You can check out the table for yourself, using the program listed
as Program 8-4A. That program fetches the content of address
3801H, tests for any key depression at that address, and if there is
a key depression involving any of the keys under address 3801H,
the program returns to the T-BUG monitor. At that time you can
do a Register function to view the contents of the A register--the
one carrying the data byte from 3801H.

145

Keyboard Demonstrations

Program 8-4A. Checking for key depression in row 3801H.

4A00 3A 01 38 FETCH: LD A, (3801H) ;FETCH BYIE FROM KB

4403 B7 OR A ;CHECK FOR KEY DEPRESSION
4A04 28 FA JR Z,FETCH 3 IF NOT, FETCH AGAIN

4A06 C3 AO 43 JP 43A0H ;ELSE RETURN IO T-BUG

Program 8-48. Checking for key depression anywhere on the keyboard.

4A00 21 7F 38 LD HL,387FH ;POINT TO WHOLE KB
4403 7E WALT: LD A, (HL) ;FETCH KB BYTE

4A04 BT OR A ;CHECK FOR CLEAR

4405 20 FC JR NZ,WAIT ;IF NOT, WAIT AGAIN
4AD7 TE FETCH: LD A, (HL) ;ELSE FETCH KB BYTE
4A08 BY OR A ;CHECK FOR ANY KEY
4A09 28 FC JR Z,FETCH ; IF NOT,FETCH AGAIN
4AOB C3 AD 43 JP 43A0H ;ELSE RETURN TO T-BUG

Program 8-4C. Checking for depression of the A key.

WAIT: LD 4, (387FH) ;FETCH BYTE FROM WHOLE KB
4400 3a 7F 38 OR A ;CHECK FOR ANY KEY DEPR.
4A03 B7 JR NZ,WAIT 3 IF SO,WAIT AGAIN
4A04 20 FA FETCH: LD A, (3801%1) ;GET BYTE FROM A ROW
4A06 3A 01 38 CP 2H ;IS IT 'A'?
4A09 FE 02 JR NZ,FETCH ; IF NOT,FETCH AGAIN
4A0B 20 F9 JP 43A0H ;ELSE RETURN TO T-BUG

4A0D C3 AQ 43

You can use Program 8-4A to check the operation of any of the
addresses on the basic keyboard matrix table. Simply change the
memory address in the first line to the one you want to'inspect.

Perhaps you are getting an inkling of what can be done here
with respect to controlling the operation of machine-language
programs from the keyboard. This is one kind of “wait for keyboard
response” operation. The only problem is that the program is
sensitive to any one of a number of keys within the specified “key-
board memory” address. Usually a wait-for-key-response function
works with two extremes: do something when any key is depressed,
or do something when one specific key is depressed. Programs
8-4B and 8-4C illustrate these two extremes of keyboard controls.

Program 8-4B is sensitive to any key depression. The point in the
“keyboard memory” to search for any key depression is 387FH.
That address isn’t shown on the matrix chart in Table 8-1, but
it simply represents a logical oring of all the addresses that are
there. So if a key depression occurs at any of the prime “keyboard
memory” addresses, address 387FH will take on a hexadecimal value
other than zero.

Now, there is a small problem inherent in the idea of writing a
program that senses any key depression: depressing some key in

146

order to initiate the program can be sensed and considered a key
depression for the operation of the program itself. Because of that
effect Programs 8-4B and 8-4C begin with a WAIT operation—
one that does not begin looking for new key depressions until a
key (the key that initiates the program) is released.

Load the program in Program 8-4B and you will see it does
nothing until you depress any key on the keyboard. The last line
in the program then brings up the T-BUG monitor, making it con-
venient for you to do a Register function and inspect the content
of the A register.

Going to the opposite extreme, it is often important to make
the scheme sensitive to the depression of just one particular key.
You must determine which key in advance and then write the pro-
gram accordingly.

The listing for Program 8-4C is sensitive only to the A key. It
appears to do nothing at all until you strike that particular key; then
the program returns to the T-BUG monitor.

The WAIT phase of Program 8-4C “buzzes” the keyboard until
it is completely free of any key depressions, then the FETCH phase
begins looking for the depression of the A key. According to the
matrix table, the A key is characterized by data 02H at address
3801H. Thus the FETCH portion of the program is written to
inspect the content of address 3801H, compare it with 02H, and
come to an end if the comparison is true.

Three Clusses of Keyboard Entries

In-line, keyboard-entry situations generally fall into one of three
categories:

@ Interrupt the program and wait for a certain keystroke (similar
to BASIC’s INPUT statement).

@ Interact with the program via a keystroke but do not interrupt
ongoing activity (similar to BASIC’s INKEY$ operations).

® Interact with, but do not interrupt, an ongoing program only
as long as a key is depressed (similar to the PEEK (1446) oper-
ations in Chapter 3).

Program 8-5, flowcharted in Fig. 8-2, is an example of interrupting
the execution of a program until a keystroke is made. In this case,
striking the ENTER key resumes program operation, causing a
rectangle of light to flash in the upper left-hand corner of the screen.

The program continuously looks for an ENTER keystroke (01H
at address 3840H) until that condition is satisfied. This amounts
to an interruption of the overall program. Once the operator strikes
the ENTER key, the program breaks out of the FETCH loop and
begins flashing the light on the screen.

147

4A00
4403
4A04
4A06
4A09
4A0B
440D
4410
4A20
4A23
4A24
4A26
4427
4A29
4428
4A2D
4A2F
4431

Program 8-5. A keyboard-entry operation that interrupts the program until the
ENTER key is depressed.

3A
B7
20
3a
FE
20
cp
()]
21
1D
20
15
CB
28
36
18
36
18

¥

FA
40
01
F9
c9
20
00

FD

64
04
BF
4F
20
FA

38 WAIT: LD A,(387FH)
OR A
JR NZ,WAIT
38 FETCH: LD A,(3840H)
cp 1
JR NZ,FETCH
01 CALL 01C9H
4A CALL FLASH
ic FLASH: LD HL, 3CO0H
DECE : DEC E
JR NZ,DECE
DEC D
BIT 5,D
JR Z,0FF
LD (HL),191D
JR DECE
OFF: LD (HL),32D
JR DECE

JFETCH BYTE FROM WHOLE KB
;CHECK FOR KEY DEPRESSION
JIF SO,WAIT AGAIN

;GET BYTE FROM 'ENTER' ROW
;IS IT '"ENTER'?

;IF NOT, FETCH AGAIN
;ELSE CLEAR THE SCREEN
;AND CALL FLASH

;POINT TG VIDEO

;COUNT DOWN

;IF NOT DONE,COUNT AGAIN
;ELSE COUNT DOWN D

;CHECK IF 'OFF' CYCLE

; IF NOT,DO 'OFF' CYCLE
;ELSE TURN ON THE SPOT
{AND TIME AGAIN

;TURN OFF THE SPOT

;AND TIME AGAIN

Since FLASH THE LIGHT is an endless-loop operation in this
example, you must operate the RESET key to get out of it. The
important point, however, is that the program holds that FETCH

148

RUN
WAIT
(FOR KEY
RELEASE)
FETCH
"ENTER'
ROW BYTE
ENTER' No EN'TSER
01H
AT
ves 38404
FLASH
THE
LIGHT

Fig. 8-2. Flowchart for Program 8-5.

loop—interrupting progress--until a certain keystroke occurs.

The program flowcharted in Fig. 8-3 is an entirely different sort of
key-entry situation. The listing in Program 8-6 allows the light
to flash continuously, whether the operator is striking a key or not.
But every FLASH ONE CYCLE operation ends by polling the
keyboard—polling specifically for an L or R keystroke.

If an L keystroke occurs during that keyboard-polling interval,
the spot of light flashes at the upper left-hand corner of the screen.
But if an R keystroke occurs, the position of the flashing light
changes to the upper right-hand corner of the screen.

Program 8-6. A keyboard-entry operation that accepts keyboard controls without
interrupting the ongoing program.

4A00 3A 7F 38 WAIT: LD A, (387FH) ;POINT T KB

4AD3 B7 OR A ;ANY KEY DEPRESSED?
4A04 20 FA JR NZ,WAIT ;IF SO, WAIT AGAIN
4A06 €D C9 O1 CALL O1C9H ;ELSE CLEAR THE SCREEN
4A09 21 00 3¢ LD HL,3C00H ;AND INITIALIZE VIDEO
4AOC 3A 06 38 FETCH: LD A, (3806H) ;CHECK ROWS FOR 'L','R'
4AOF B7 OR A ;EITHER KEY DEPRESSED?
4LALO 20 05 JR NZ,CODE ; IF SO, DO CODE

4A12 CD 30 4A DOIT: CALL FLASH ;ELSE FLASH AS IS

4A15 18 F5 JR FETCH ;AND FETCH AGAIN

4A17 FE 10 CODE : CP A, 10H ;IS IT 'L'7

4A19 20 04 JR NZ,RGHT ;IF NOT,SET RIGHT
4AlB 2E 00 LD L,0 ;ELSE SET LEFT

4AlD 18 ¥3 JR DOIT ; AND FLASH

4ALF FE 04 RGHT: cP A4 ;IS IT 'R'?

4A21 20 FA IR NZ,DOLT ;IF NOT, FLASH AS IS
4A23 28 3F LD L,3FH ;ELSE SET RIGHT

4425 18 F6 JR DOIT ;AND FLASH

4A30 1D FLASH: DEC E ;COUNT DOWN E

4A31 20 FD JR NZ,FLASH ;IF NOT DONE,DO AGAIN
4433 15 DEC D {ELSE COUNT DOWN D
4A34 CB 6A BIT 5,D ;CHECK IF 'OFF' CYCLE
4A36 28 04 IR Z,0FF ;IF NOT,THEN DO 'OFF'
4A38 36 BF LD (HL),191D ;ELSE TURN ON THE SPOT
4434 18 F4 JR FLASH {AND DO TIMING AGAIN
4A3C 36 20 OFF: LD (HL),32D ;TURN OFF THE SPOT
4A3E €9 RET ;CHECK KEYBOARD AGAIN

So keyboard operations do not interrupt the flashing light.
Striking the L or R keys influences the program, however.

Finally, Program 8-7 and Fig. 8-4 illustrate a situation where
depressing and holding down a certain key influences, but does
not interrupt, the behavior of a program. In this case the flashing
rectangle of light appears on the screen as long as the ENTER
key is depressed. Otherwise, the light is turned off.

The program polls the keyboard after each light-flashing cycle
or after finding that the ENTER key is not depressed. When the
ENTER key is depressed, the program does a light-flashing cycle.

149

RUN

WAIT
(FOR KEY
RELEASE)

ADDRESS FOR ‘L' IS 3802H
/ ADDRESS FOR ‘R" IS 3804H
FETCH . ADDRESS FOR 'L’ OR 'R’

LR IS 3802H ORed WITH 3804H = 3806H

|

SET LEFT
POSITION

SET RIGHT
NO POSITION
FLASH
ONE
CYCLE

Fig. 8-3. Flowchart for Program 8-6.

SOME SPECIAL VIDEO/KEYBOARD FUNCTIONS

Your TRS-80 is provided with a number of useful functions that
are stored in the ROM space. Such functions can be CALLed from
a machine-language program, thus performing important video/key-

150

Program 8-7. A keyboard-entry operation that is sensitive to holding down a key.

4A00 21 00 3¢ TOGL: LD HL,3C00H ;POINT TO VIDEO

4A03 cD Cc9 01 CALL 01C9 ;CLEAR THE SCREEN

4A06 3A 40 38 FETCH: LD AA,(3840H) ;GET BYTE FROM 'ENTER' ROW
4A09 FE Ol ce 1 ;IS 1T 'ENTER'?

4A0B 20 F9 JR NZ,FETCH ; IF NOT,FETCH AGAIN

4A0D AF XOR A ;ZERO THE ACCUMULATOR
4ACE €D 30 44 CALL FLASH ;AND CALL FLASH

4All C3 06 44 JP FETCH ; JUMP 1O FETCH

Also add FLASH subroutine, addresses 4A30 through
4A3E, from Program 8-6

board operations without your having to do a great deal of tedious

programming—it has been done for you.
Table 8-2 lists some of the most useful kinds of ROM CALLs.
A simple CALL 01C9H, for example, does all the work necessary

RUN

SET VIDEO
AND
CLEAR SCREEN

FETCH
‘ENTER’
BYTE

Fig. 8-4. Flowchart for Program 8-7. NO

YES

CLEAR
KEYBOARD

FLASH
CYCLE

151

for clearing the screen and sending the cursor to home. That CALL
does not turn on the cursor, however; as shown in Table 8-2,
turning on the cursor is a two-step operation: LD A,14D, followed
by CALL 033AH.

Table 8-2. Some Useful ROM-Based Cursor-Control Routines

Contents M i Comment

CD C9 01 CALL 01C9H ;CLEAR THE SCREEN AND HOME THE CURSOR

CD 49 00 CALL 0049H ;FULLY DECODED (ASCil) KB CHARACTER
;TO THE ACCUMULATOR

CD 3A 03 CALL 033AH sPRINT ASCII CHARACTER FROM ACCUMULATOR,
;ADVANCE THE CURSOR POSITION, AND
;SCROLL THE DISPLAY IF NECESSARY

3E OF LD A,14D ;SET CURSOR ‘TURN ON’ TO ACCUMULATOR
CD 3A 03 CALL 033AH ;PRINT CURSOR ‘ON’

3E OF LD A,15D ;SET CURSOR ‘TURN OFF' TO ACCUMULATOR
CD 3A 03 CALL 033AH ;PRINT CURSOR ‘OFF’

3E 0D LD A,13D ;SET ‘LINE FEED/CARRIAGE RETURN’ TO ACC.
CD 3A 03 CALL 033AH SPRINT AT

3E 1C ID A,28D ;SET 'HOME CURSOR’ TO ACCUMULATOR
CD 3A 03 CALL 033AH FPRINT AT

3E 1D LD A,29D SET ‘CURSOR TO BEGINNING OF CURRENT LINE/
;TO ACCUMULATOR
CD 3A 03 CALL 033AH FSPRINT 1T

3E 1E iD A,30D ;SET ‘ERASE TO END OF CURRENT LINE’ TO
;ACCUMULATOR
CD 3A 03 CALL 033AH FPRINT 1T

3E 1F LD A31D ;SET ‘CLEAR TO END OF FRAME' TO ACC.
CD 3A 03 CALL 033AH SPRINT T

Notice that a CALL 0049H places a fully decoded (hexadecimal
ASCII) keyboard character into the accumulator. There is no need
to write lengthy keyboard-decoding programs—this one does it
for you.

A CALL 033AH prints an ASCII character from the accumulator
to the screen. It mimics a single-character PRINT operation from
BASIC. Like the PRINT command in BASIC, this CALL executes
all the cursor functions. The procedure is to load the character
or function into the accumulator, then do the CALL 033AH. See

152

more examples in Table 8-2 and some working demonstrations in
Program 8-8.

Program 8-8A uses the CALL 0049H and CALL 033AH combina-
tion to get a keyboard character and print it on the screen. Those
two operations, included in the KB sequence, are part of a loop
that allows you to fill the screen with characters if you choose to
do so.

A Simple Text-Writing Program

Program 8-8A. Printing and editing screen text without a cursor.

4ADO 3A 7F 38 WAIT: LD A, (387FH) ;LOOK AT KB

4A03 B7 OR A ;ANY KEY DEPRESSED?
4AQL 20 FA JR Z,WAIT ; IF SO,WAIT AGAIN

4406 CD €9 01 CLs: CALL 01C9H ;ELSE CLEAR AND HOME
4A09 CD 49 00 KB: CALL 00494 ;KB CHAR TO A

4AOC FE 24 CP 42D JIS IT '#'7

4LADE 28 F6 JR Z,CL8 ;IF SO,CLEAR AND HOME
4410 CD 3A 03 CALL 033AH ;ELSE PRINT CHAR

4A13 18 F4 JR KB ;AND GET THE NEXT ONE

Program 8-8B. Printing and editing screen text with the help of a cursor.

4A00 3a 7F 38 WAIT: LD A, (387FH) ; LOOK AT KB

4403 87 OR A sANY KEY DEPRESSED?
4A04 20 FA JR Z,WAIT s IF SO,WAIT AGAIN
4406 CD €9 01 CLs: CALL O1C9H ;ELSE CLEAR AND HOME
4409 3E OE LD A, 14D ;SET 'CURSOR ON' CODE
4A0B CD 3A 03 CALL 033a# sPRINT THE CURSOR
4AOE €D 49 00 KB: CALL 00498 ;KB CHAR TO A

4All FE 24 CP 42D ;IS IT '%'2

4A13 28 F1 JR Z,C18 ;IF S0, CLEAR AND HOME
4A15 CD 3A 03 CALL 033aH JELSE PRINT CHARACTER
4A18 18 F4 JR KB ;AND GET THE NEXT ONE

Program 8-8C. Text writing and editing with a cursor/no-cursor control option.

4A00 34 JF 38 WAIT: LD A, (387FH) ;LOOK AT WHOLE KB

4403 B7 OR A ;ANY KEY DEPRESSED?
4404 20 FA IR Z,WAIT ; IF SO,WAIT AGAIN

4406 CD €9 01 CALL OLC9H ;ELSE CLEAR AND HOME
4409 3E 3F SET: LD A,63D ;17 T0 A

4A0B €D 3A 03 CALL 033AH iPRINT IT

4AOE CD 49 00 KB1: CALL 00494 ;FETCH KB CHARACTER
4All FE 43 ce 67D ;18 IT '¢'?

4A13 28 0B IR Z,CURON ; IF S0,TURN ON CURSOR
4AlS FE 4E cp 78D ;IS IT 'N'?

4A17 20 F5 JR NZ,KB1 i IF NOT,GET CHAR AGAIN
4A19 3E OF LD A,OFH ;ELSE TURN OFF CURSOR
4AlB CD 3A 03 CALL 033aH ;PRINT

LAIE 18 05 JR CLS2 ;AND START TYP ING

4A20 3E OE CURON : LD A,OEH {SET CURSOR ON CODE
4A22 CD 3A 03 CALL 033aH ;PRINT IT

4A25 <D C9 01 cLs2: CALL OlC9H ;CLS AND HOME THE CURSOR
4A28 34 40 38 KB2: LD 4, (3840H) ;CET 'CLEAR' ROW FROM KB
4A2B FE 02 cp 2 ;IS IT 'CLEAR'?

4A2D 28 OC JR Z,SET ;IF SO,D0 SET AGAIN
4A2F CD 49 00 CALL 0049H ;FETCH KB CHAR TO A
4A32 CD 3A 03 CALL 003AH JPRINT IT

4a35 18 Fl JR KB2 ;AND GET NEXT CHARACTER

153

But the KB sequence is also sensitive to a striking of the asterisk
key. Whenever that happens, operations are sent to CLS—a CALL
01C9H that clears the screen and homes the cursor. So you can type
a lot of characters, then strike the % key to clear the screen, and
start all over again. It is possible to edit the text by taking advantage
of the SHIFT arrow key functions.

The WAIT sequence at the beginning of all three programs is
necessary only for these demonstrations. It makes certain nothing
is printed on the screen until you release the key that starts the pro-
grams in the first place.

When running Program 8-8A you will find things a bit awkward
because the cursor symbol isn’t there to let you know where the
next character will be printed—a feature that is especially trouble-
some when one is attempting to move the cursor to a position in
a blank portion of the screen. So Program 8-8B fixes that.

Program 8-8B runs the same way as the first one in the series,
but it includes the LD A, 14D and CALL 033AH sequence to turn
on the cursor symbol. Those two instructions, included in the CLS
operations, perform the same task as BASIC’s PRINT CHR$(14)
as described in Chapter 2.

The notions are further refined in Program 8-8C. The WAIT se-
quence ends with a CALL 01C9H to clear the screen and home the
cursor. But then the SET sequence loads the hexadecimal code for
a question mark into the accumulator and uses a CALL 033AH
to print it. You thus see a clear screen with a question mark appear-
ing in the upper left-hand corner.

The KB1 sequence gives you an opportunity to see or not see the
cursor symbol. Using a CALL 0049H to pick up a keyboard charac-
ter, this sequence is sensitive to both the C and N keys (CP 67D and
CP 78D, respectively). If you choose to see the cursor and respond
to the question mark by striking the C key, operations jump down
to CURON-—a set of two instructions that turn on the cursor symbol.
But if you answer the question mark with a N, the last three lines
in the KBl sequence turn off the cursor and jump operations to
CLS2.

CLS2 clears the screen and homes the cursor, and then the
sequence in KB2 allows you to print characters at your heart’s
content. That particular video/keyboard sequence, incidentally,
improves on the first two programs by doing away with the idea
of clearing the screen by striking the asterisk key. Instead, the
LD A.(3840) and CP 02H sequence makes the system sensitive
to the CLEAR key.

So when you strike the CLEAR key while the system is running
the screen-printing KB2 sequence, the system returns to SET. You
then have a chance to select seeing or not-seeing the cursor, and

154

on making your selection the screen clears and you are back in the
typing business again.

The main point of Program 8-8C is to illustrate the operation
of the cursor-on/cursor-off operations—examples of cursor controls
CALLed from a machine-language program. In the process of il-
lustrating the point, however, you will find a review of much of the
material already described in this chapter.

T-BUG AND THE MEMORY ENVIRONMENT

The memory environment for T-BUG isn’t nearly as complicated
as that of BASIC. T-BUG, itself, is loaded as a SYSTEM-oriented,
machine-language program between 4380H and 497FH (see Fig.
7-1). Obviously, any program written from T-BUG ought not alter
the content of any address in that area—otherwise T-BUG will be
destroyed.

All addresses from 4980H through the top of your RAM space
are thus free for programming applications. Note, for instance, that
most of the previous demonstrations begin at address 4A00H. This
leaves plenty of space between the top of T-BUG and the beginning
of those programs.

There is, however, some additional RAM space below the T-BUG
monitor area: everything from 41E6H (the beginning of BASIC’s
i/o buffer) to 437FH (the address just below T-BUG). T-BUG
users generally avoid this RAM space for a couple of reasons. First,
it is a relatively small amount of space compared to that available
above T-BUG. Second, any SYSTEM program, unless instructed
otherwise, will set the program stack at 4288H—in the BASIC
i/o space.

Nevertheless, the RAM space below T-BUG can prove quite use-
ful, as shown later in this chapter. The fact that it is a fairly small
amount of memory space isn’t relevant to the applications that will
be cited at that time, and the stack can always be pointed else-
where, say to the top of your available memory space.

Now, let us take a look at some memory operations that take ad-
vantage of the wealth of RAM above T-BUG.

Working With User’s RAM Above T-BUG

Program 8-9 allows you to compose text on the video screen and
then transfer it to some user's RAM space where it can be saved
for an indefinite period. In the meantime, you can tinker around
in video memory, recalling the original text whenever you choose.

One of the most impressive features of this program is the speed
at which saved text can be restored to the screen. BASIC users are
accustomed to a fairly slow printing rate, even when using direct

155

Program 8-9. Assembly listing for a program that allows you to transfer video
memory/screen information to a block of higher memory space.

4A00 GD 9 01 NEXT: CALL 01C9H ;CLS AND HOME THE CURSOR
4A03 3E 3F QUERY: LD A,63D ;"7' TO ACCUMULATOR
4A05 CD 3A 03 CALL 033AH ;PRINT IT
4A08 CD 49 00 CALL 0049H ;KB CHAR TO ACCUMULATOR
4A0B FE 52 cP 82D ;IS IT 'R'?
4LAOD CA 60 4A Jp Z,DISP ; IF 50,RECALL DISPLAY
4Al0 FE 43 cp 67D ;I8 IT 'C'?
4A12 CA 20 4A JP Z,C0MP ; IF 50, COMPOSE
4A15 C3 03 4A JP QUERY ;ELSE QUERY AGAIN
4A20 CD C9 Ol COMP: CALL 01C9H ;CLS AND HOME THE CURSOR
4A23 3E OE LD A, 14D ;SET 'CURSOR ON' CODE
4A25 CD 3A 03 CALL 033aH ;PRINT IT
4428 CD 49 00 KB: CALL 0049H ;GET KB CHARACTER
4A2B TE 2A CP 42D (IS IT '*'?
4A2D CA 40 4A JP Z,5AVE ;IF SO,SAVE DISP IN MEM
4A30 CD 3A 03 CALL 033AH ;ELSE PRINT THE CHAR.
4A33 18 F3 JR KB ;AND GET THE NEXT ONE

H
4440 3E OF SAVE: LD A,15D ;SET 'CURSOR OFF' GODE
4A42 CD 3A 03 CALL 033AH ;PRINT IT
4a45 21 00 3C LD HL,3CO00H ;POINT 10 VIDEO
4448 11 00 4B LD DE,4BOOH {POINT TO MEMORY
4a48 01 00 04 LD BC,1024D ;SET NUMBER OF BYTES
4ALE ED BO LDIR ;XFER SCREEN TO MEMORY
4A50 C3 00 4A Jp NEXT ;AND BACK TO BEGINNING
4A60 CD C9 01 DISP: CALL OlC9H ;CLS AND HOME THE CURSOR
4A63 21 00 4B LD HL,4BOOH ;POINT TO MEMORY
4466 11 00 3¢ LD DE,3CO0H ;POINT TO VIDEO
4A69 01 00 04 LD BC,1024D {SET NUMBER OF BYTES
4A6C ED BO LDIR ;XFER MEMORY TO SCREEN
4LAGE CD 49 00 HOLD: CALL 0049H ;KB CHAR TO ACCUMULATOR
4A7l FE 2A LD 4,42D ;IS IT '*'?
4A73 20 F9 JR NZ,HOLD ;IF NOT, HOLD AGAIN
4A75 €3 00 4A JP NEXT ;ELSE BACK TO BEGINNING

POKE and PEEK operations. But this machine-language program
flashes a full screen of text into place in a very short time—certainly
too short a time to see the characters being printed individually.

Load the program and run it from 4A00H. The screen will clear
and a question mark will appear in the upper left-hand corner of the
screen. Reply by striking:the C (Compose) key. That will replace
the question mark with the typing cursor.

Now type in any sort of text you want, using any editing keys
as you wish. When done; strike the % key. As soon as you do that
the screen will clear and the question mark will appear again.

This time, respond by striking the R (Recall) key. Presto! there
is your original text returned to the screen.

The general idea is to compose new text (and save it by striking
the %k key) or recall old text from memory.

Note the use of special video/keyboard CALLs in the listing,
as well as the Z-80's block-transfer instruction, LDIR. In view of

156

past demonstrations you should be able to figure out the operating
details yourself. Hint: All 1024 video bytes, beginning at 3CO00H
are saved in RAM, beginning at 4B00H.

Program 8-10 is a somewhat more sophisticated version of the
one just described. This program allows you to generate the effect
of doubling the video screen capacity; it allows you to work with
two different “pages” of text.

You can, for instance, compose or edit some text appearing on the
screen, and then exchange it with a full screen of text previously
saved in memory. That text can also be deleted or edited and ex-
changed again with the original. The effect is that of working with
two separate crt screens (although you can really work with just
one at a time).

Program 8-10. Listing for 2 memory exchange program gives the user two “pages”
of text to work with.

4A00 CD 49 00 NEXT: CALL 00494 ;FETCH KB CHARACTER
4403 FE 58 cp 88D ;IS IT 'X'?
4405 28 14 JR Z,CEX ; IF S0, DO EXCHANGE
4A07 FE 4E cp 78D 315 IT 'N'?
4A09 28 OB JR Z,CLR ; IF SO,CLEAR THE SCREEN
4A0B FE 45 CP 69D ;IS IT 'E'?
4AOD 28 02 JR Z,CED ; IF SO, DO EDITING
4AOF 18 DF JR NEXT ;ELSE LOOK AT KB AGAIN
4A11 CD 30 4aA CED: CALL COMP ; CALL COMPOSE MODE
4Al4 18 F9 JR NEXT ;THEN START AGAIN
4A16 €D C9 Ol CIR: CALL 01C9RH ;CLS AND HOME THE CURSOR
4419 18 ¥9 JR NEXT ;THEN START AGAIN
4A1B €D 50 4aA CEX: CALL EXCH ;CALL EXCHANGE OPS
4AIE 18 F9 JR NEXT s THEN START AGAIN
4A30 3E OE CoMP LD A, 14D ;SET 'CURSOR ON' CODE
4432 CD 3A 03 CALL 033AH JPRINT IT
4A35 CD 49 00 KB: CALL 00494 ;FETCH KB CHARACTER
4A38 FE 2A CP 42D ;I8 IT '#'?
4A3A 28 05 JR Z,CROFF ; IF SO, WRAP IT UP
4A3C €D 33 00 CALL 033AH ;ELSE PRINT THE CHAR.
4A3F 181F4 JR KB ;AND GET THE NEXT ONE
4A41 3E OF LD A,15D 3SET 'CURSOR OFF' CODE
4443 CD 3A 03 CALL 033aH JPRINT IT
4A36 €9 RET ;RETURN TQ NEXT

H
4AS0 21 Q0 4B EXCH: LD HL,4BOOH ;POINT TO MEMORY
4A53 11 00 3¢ LD DE,3COOH ;POINT TO VIDEO
4A56 01 00 04 LD BC,1024D ;SET NUMBER OF BYTES
4A59 1A SWAP : LD A, {(DE) ;VIDEO BYTE TO ACC.
4A5A ED AO LDI ;MEMORY BYTE TO VIDEO
4A5C 2B DEC HL ;POINT BACK MEMORY ADDR.
4A5D 77 LD (HL),A ;ACC. TO MEMORY
4ASE 23 INC HL ;POINT AHEAD MEMORY ADDR.
4ASF AF XOR A ;CLEAR ACCUMULATOR
4A60 B9 CP C ;LSB OF COUNTER DONE?
4A61 20 F6 JR NZ,SWAP s IF NOT,SWAP ANOTHER BYTE
4A63 B8 cP B ;MSB OF COUNT DONE?
4864 €8 RET Z ;IF S0, RETURN TO NEXT
4A65 18 F2 JR SWAP ;ELSE SWAP ANOTHER BYTE

157

The program uses three control characters from its monitor mode:
N clears the screen and the “page” residing there, E sets up the
Edit mode that allows you to type new information or alter some
old text on the displayed page, and X exchanges the two pages—
transfers the one currently on the screen to memory, and displays
the page previously saved in memory.

Striking the % key gets the system out of the Edit or exchange
mode and returns it to the monitor. The only way out of the pro-
gram is to work the RESET push button.

So load Program 8-10 and give it a try. Play with the program
for a bit and then you will be in a better position to appreciate the
internal workings.

With the program loaded, run it by doing a J4A00. Then delete
the text on the screen by striking the N key. After that, get into
the Edit mode by striking the E key. At that time the cursor symbol
should appear in the upper left-hand corner of the screen.

Now type in some text—anything will do. Notice you can move
around the cursor, without disturbing the text, by working the
arrow keys when the SHIFT key is depressed.

When you are satisfied with the text on this first page, strike
the % key to return to the monitor. To save that page and call up
its alternate, strike the X key.

There’s no telling what the alternate page will look like at this
time, but you can always clear it up by striking the N key and then
the E key to type some new stuff. And when you are done with that
page, strike the % key.

To bring back the original page, strike the X key. Everything
should appear as it did earlier in the demonstration. If you want to
see your second page again, simply strike the X key again.

The main point of the demonstration is that exchange operation—
swapping the contents of the video memory with some user’s mem-
ory of equal size elsewhere in the system. That “hidden-page” mem-
ory, incidentally, begins at 4BOOH, and occupies 1024 (decimal)
bytes from there. In a manner of speaking, this program creates
an alternate video memory.

Referring to the listing for Program 8-10, labels NEXT, CED,
CLR, and CEX make up the “monitor.” This group of instructions
uses a CALL 0049H to pick up a keystroke and put its ASCII char-
acter code into the accumulator. After that, a series of compare
instructions look for the control characters and call the appropriate
routines.

The COMP routine, for instance, is called whenever you want to
Edit, or compose, some new text on the screen. It begins by turning
on the cursor (so you will know where the screen printing will
begin) and CALLing 0049H to pick up an ASCII character code

158

from the keyboard. The routine uses a CALL 033AH to print the
characters and advance the cursor.

If, while running the COMP routine, the system sees an asterisk
character, it turns off the cursor (so that it will not be saved in
memory with the other text) and returns operations to the monitor.

Striking the N key from the NEXT routine does a CALL 01C9H
to clear the screen and home the cursor.

The EXCH routine is the one responsible for exchanging the
contents of the video memory with the alternate video memory
space. It simply runs through both memory blocks, passing a byte
at a time through the accumulator. When the exchange is completed,
operations automatically return to the monitor.

You can change the address of the alternate video memory by
changing the hexadecimal address loaded into the HL register
pair at the beginning of the EXCH routine.

Using the I/0 Buffer Space

The i/o buffer is located between 41E6 and 42E7H on the TRS-80
memory map. That isn’t very much RAM space, compared to that
above the T-BUG’s space, but it can be useful. The i/o buffer space
is especially useful when one is attempting to control machine-
language programs, using keyboard entries having more than one
character in them. Thus far all keyboard controls have used just one
character.

A CALL 0361H connects the keyboard to the i/o buffer. That
CALL does a lot of routine housekeeping for you. For instance, it
automatically begins loading keyboard characters from the first
character location in the buffer; there is no need to initialize it
yourself. That CALL also turns on the cursor symbol for you, and,
after each keyboard entry, it advances the cursor position and
i/o pointer.

What’s more, the system remains in that i/o loop until you strike
the ENTER key. There is no need for dreaming up a special con-
trol character for breaking out of the routine.

What's the price to pay for all of these nice features? It turns out
to be rather small. Remember that any SYSTEM tape will set its
program stack into the i/o memory space, unless instructed to do
otherwise. So if you fail to relocate the program stack before doing
a CALL 0361H, you run the risk of losing the program.

Before doing a CALL 0361H, then, you should relocate the stack
with a LD SPNN type of instruction. LD SP,7FFF for example.
(That particular address represents the top of RAM space for a
16K machine.) You can put the stack anywhere in the user's RAM
space, remembering that the stack will always build downward.

To get a feeling for how this keyboard i/o scheme works, try this:

159

4A00 31 FF 4F LD SP,4FFFH ;GET STACK OUT OF 1/0
4A03 CD C9 01 CALL 01C9H ;CLEAR THE SCREEN
4A06 CD 61 03 CALL 0361H ;KB TO 1/0

and insert a Break at 4A09.

Running from 4A00 then lets you type in all sorts of characters—
much like typing a new program line in BASIC or answering an
INPUT instruction. When you are through entering some characters,
strike the ENTER key. If you have inserted the Break as suggested,
the system will return safely to the T-BUG monitor.

After leaving a CALL 0361H routine, your text will be saved
in the i/o buffer space. Adding the following instructions to the
previous ones will show you the contents of the entire i/o buffer.
That, of course, should confirm that your information was indeed
entered there from the keyboard.

4A09 21 E7 41 LD HL,41E7H ;POINT TO START OF 1/O
4A0C 11 00 3C tD DE,3CO0H ;POINT TO START OF VIDEQ
4A0F 01 FF 00 LD BC,00FFH ;SET BYTE COUNT

4A12 ED 80 LDIR ;SHOW 1/O BUFFER

and insert a Break at 4A14.

Now you can run from 4A00, load some characters into the i/o
buffer and strike the ENTER key to end the loading operation and
display the contents of the i/o buffer.

There will most likely be a lot of garbage in the display, but
your keyboard input will always appear at the beginning. Also note
that your characters are bracketed by @ symbols. Those represent
the nulls that are automatically inserted into a buffer string for
BASIC interpretation purposes. (See “The I/O Buffer” in Chapter 4.)

Program 8-11 represents an application of this i/o buffer routine.
The point of the demonstration is to show how the buffer can be
used as an entry point for control expressions having more than
one character in them. The control expressions in this case are
BL, EX, and EN. Doing a BL makes a small rectangle of light blink
on and off. Entering an EX makes that rectangle exchange positions
—from the left to right or from the right to left corners of the
screen. Entering expression EN ends the program and returns oper-
ations to the T-BUG monitor.

The program begins by setting the stack of the i/o buffer and to
address 4FFFH. Then it clears the screen and prints a question-
mark prompt symbol. The idea is to let you know it is time to desig-
nate one of the three basic functions: BLink, EXchange, or ENd.

Instruction CALL 0361H calls the i/o routine, and it remains
in that loop until you strike the ENTER key. The system’s sensi-
tivity to the ENTER key is built into the routine—you don’t have to
write it into the program itself.

160

Program 8-11. Using the i/ o buffer as an entry point for multiple-character

keyboard commands.

4A00 31 FF 4F STAK: LD SP,4FFFH
4A03 €D C9 01 START: CALL 01C9H
4A06 3E 3F LD A,3FH
4A08 €D 3A 03 CALL 033AH
4A08 €D 61 03 CALL 0361H
4ACE 21 00 3C LD HL,3CO0H
4A11 11 3F 3C LD DE,3C3FH
414 Ol E7 41 LD BC,4lET7H
4A17 0A GETC: LD A, (BC)
4A18 FE 20 CP 204
4A1A 30 08 JR NC,TRY
4A1C FE EF CP OEFH
4AIE CA 03 4A P 2,START
4421 03 INC BC

4422 18 F3 JR GETC
4A24 FE 42 TRY: cP 42H

4A26 20 0D JR NZ,NEXT
4A28 03 INC BC

4A29 0A LD A, (BC)
4A2A FE 4C CP 4CH

4A2C C2 03 4A JP NZ,START
4A2F CD 00 4C CALL BLINK
4432 €3 03 4A JP START
4A35 FE 45 NEXT: CP 45H

4A37 €2 00 4A Jp NZ,START
4A3A 03 INC BC

4A3B 0A LD A, (BC)
4A3C FE 58 CP 58H

4A3E 20 06 JR NZ,NEXT2
4A40 CD 20 4C CALL EXCH
4A43 €3 03 4A JP START
4A46 FE 4E NEXT2: CP 4Eh

4A48 C2 03 4A JP NZ,START
4A4B CD 80 43 CALL 4380H
4C00 ¢cDb c9 01 BLINK: CALL O1C9H
4C03 36 20 RBINK: LD(HL), 204
4C05 €D 15 4C CALL DELAY
4C08 36 BF LD (HL),191D
4C04 €D 15 4C CALL DELAY
4C0D 34 40 38 LD A, {(3840H)
4C10 FE 04 CP 4H

4C12 20 EF JR NZ,RBLINK
4Cl4 ¢9 RET

4C15 06 1F DELAY: LD B,1FH
417 OE FF SETC: LD C,0FFH
4cl9 0D DECC: DEC C

4ClA 20 FD JR NZ,DECC
4clc 05 DEC 8

4¢ciD 20 F8 JR NZ,SETC
4C1F €9 RET

4C20 EB EXCH: EX DE,HL
4C21 €3 00 4C JP BLINK

;SET STACK OUT OF I/0
;CLEAR THE SCREEN

;SET Up '?!

JPRINT IT

;KB INPUT TO /0 BUFFER
;SET LEFT VIDEO POINTER
;SET RIGHT VIDEQ POINTER
;SET I/0 POINTER

;GET CHAR FROM 1/0

;IS IT ALPHABETICAL?
;IF 50,GIVE IT A TRY

;END OF USEFUL I1/0 SPACE?

s IF S0, START AGAIN
JELSE LOOK AT NEXT 1/0
;8ND GET IT

;IS 1ST CHAR 'B'?

;s IF NOT,CHECK FOR 'E'
JELSE LOOK AT 2ND CHAR
;2ND CHAR TO A

;IS IT 'L'?

; IF NOT,START ALL OVER
{ELSE BLINK THE SPOT
;AND START ALL OVER

;IS 1ST CHAR 'E'?

s IF NOT,START ALL OVER
;ELSE POINT TO NEXT I/0
;AND PUT IT INTO A

;IS 2ND CHAR 'X'?

s IF NOT, TRY FOR 'N'
;ELSE CALL EXCHANGE
;AND START ALL OVER

;IS 2ND CHAR 'N'?

; IF NOT,START ALL OVER
;CALL T~BUG TO GET AWAY

;
;CLEAR THE SCREEN
;CLEAR SPOT

;DO TIME DELAY
;PRINT SPOT

;DO TIME DELAY AGAIN
;GET 'BREAK' KB ROW
;IS IT "BREAK' KEY?
;IF NOT,BLINK AGAIN
;ELSE RETURN

;SET MSB OF DELAY
;SET ISB OF DELAY
;COUNT DOWN LSB

; IF NOT DONE,DO MORE
JESLE COUNT DOWN MSB

; IF NOT DONE,DO LSB AGAIN

sELSE RETURN TO BLINK
;SWAP VIDEO LOCATIONS
;AND MAKE IT BLINK

161

Thus, the instruction following CALL 0361H begins a decoding
operation. That decoding operation runs through the i/o buffer,
looking for character patterns BL, EX, and EN. On finding one of
those sequences the program takes appropriate action, using one of
the subroutines beginning at address 4C00H.

If the program does not find a BL, EX, or EN combination in the
i/o buffer, it defaults to START, giving you a chance to enter the
characters again. Incidentally, the program works equally well if
you enter the full words, BLINK, EXCHANGE, or END. The i/o
decoding scheme just looks for the first two characters in each case—
if other characters follow, that’s of no consequence.

SUMMARY

CALL 0361H connects the keyboard to the i/o buffer.
It also:
® Turns on the cursor symbol.
@ Enters keyboard characters from the beginning of the buffer space.
@ Automatically advances the cursor position.
@ Remains in effect until the user strikes the ENTER key.

A CALL 0361H must be preceded by an LD SP,NN operation to get the
SYSTEM program stack out of the i/o space.

162

CHAPTER 9

Introducing the TRS-80 Editor/Assembler

At first thought, Radio Shack’s Editor/Assembler software (Cata-
log No. 26-2002) might seem to be little more than a convenient
language translator—a cassette-based system that translates standard
Z-80 mnemonics into machine code. Certainly Editor/Assembler (or
EDTASM) does that, and that is a nice feature. But there is a lot
more to it.

In fact, if you have never used an assembler system before, you
can be easily confused by all the special features that carry it far
beyond being a simple language translator. This assembler is a
system that is best understood by working into it gradually, starting
with some familiar ideas and letting first-hand experience lead you
to a real appreciation of the power of EDTASM.

This is the approach used in this chapter and the one that follows.

A FEW PRELIMINARY NOTES

The main purpose of EDTASM is to let you type in assembly
or source-code instructions from the keyboard. You still have to
design the overall program yourself, but EDTASM does all the
legwork involved in translating the mnemonics into machine-lan-
guage, or object-code, instructions. EDTASM also saves a lot of
time by letting you specify variables in terms of decimal numbers
and specify jumps and calls in terms of labels, and by generally
letting you avoid a lot of routine and often tedious figuring and table
searching,

In short, EDTASM takes advantage of the computing power of
your machine, doing a lot of clerical work for you. And you will
find that using EDTASM makes hand assembling seem primitive.

163

So EDTASM lets you type in machine-language programs in an
assembly-language format. When you are done with that phase of
the task, you enter a command that tells the system to assemble the
program into machine code. It is possible to view your assembly
or source code listing right along with the assembled machine-code
listing,

If you make any errors in the assembly listing, EDTASM will let
you know about it. Of course, EDTASM cannot be held responsible
for mistakes in the overall program, but it does seek out syntax
errors—improperly specified or misspelled source instructions.

Programs generated with EDTASM can be saved on cassette
tape and written out to a line printer.

The only drawback is that you cannot actually test your program
while the EDTASM program is residing in the user’s memory space.
In order to check the operation of an EDTASM-generated, machine-
language program, you must first save the program on cassette
tape. Then the program has to be entered as an ordinary machine-
language program under the SYSTEM command. EDTASM is thus
lost in the process, but you can check the operation of the program.

If you don't like the way the program runs, you have the option
of debugging it with T-BUG or by reloading EDTASM and fixing
the problem in assembly language.

There is a very practical reason for this shortcoming of EDTASM
-not being able to test a machine-language program without de-
stroying EDTASM. The reason is that most TRS-80 users do not
have enough RAM to support both EDTASM and a machine-lan-
guage program of any reasonable size.

The EDTASM program occupies some 6300 bytes of RAM. The
entry point is 18058 (decimal), but there are special registers
located at lower memory addresses and, indeed, in the i/o buffer
space as well.

A program of this sort that occupies only about 6K of RAM would
seem to leave a lot of RAM for machine-language programs you
develop with EDTASM—about 7K of memory for a 16K system.
But there’s a snag at this point.

As you type in the assembly codes they are stored in RAM, be-
ginning at the point where the assembler program, itself, leaves off.
So as you type in the assembly program it grows upward in the
user’s RAM space, taking up one byte of memory for every character
you enter. And you will find that even a modest assembly listing
will use up at least a couple of thousand bytes of memory. But
that isn’t all.

When you tell EDTASM to assemble the program the object codes
start filling up more RAM space, beginning where the source codes
left off. So there goes another big chunk of RAM space.

164

This all adds up to the fact that EDTASM eats up a whole lot
of RAM, leaving little space for entering the machine-language
program you are trying to develop. What’s more, EDTASM uses up
the prime memory space that you normally want for the program you
are writing.

No, we cannot test a program developed by EDTASM without
losing or writing over EDTASM. And that is why we have to live
with the awkward process of first saving the program on tape and
then entering it again under the SYSTEM command.

There is another trouble with EDTASM. It is a minor, but
sometimes annoying, problem. Recall that it is possible to bomb
out of T-BUG and end up in the BASIC monitor. Whenever that
happens you can return to T-BUG by calling SYSTEM and entering
/17312. But that cannot be done as effectively with EDTASM.

Once you return to BASIC from EDTASM, some valuable regis-
ters are disrupted. It is possible to call SYSTEM and return to
EDTASM by entering /18058; and it will seem that EDTASM is
working again. But it won't take long to find that things don’t work
out very well—you will sooner or later notice some strange effects,
such as seeing the video display suddenly change to a 32-character
line format.

So if, for any reason, you find the system going from EDTASM
to BASIC, prepare yourself to lose' everything you've done so far
and load the EDTASM system again from scratch,

It is not the purpose of this discussion to cast a bad light on
EDTASM. Rather, the idea is to point out a couple of problems
that must be clearly understood from the start. Difficulties aside,
EDTASM is a powerful programming tool.

BRINGING UP EDTASM

Obviously, the first step in using EDTASM is to acquire a copy
of the cassette tape and load it into your system. Since it is a ma-
chine-language program, it is loaded from the SYSTEM command.

So enter SYSTEM, set up the cassette player for playing the
EDTASM tape, and then enter the file name EDTASM. The pro-
gram is long, so it takes a few minutes to load. The familiar flashing
asterisk in the upper left-hand corner of the screen confirms a
good loading operation.

When the EDTASM tape is fully loaded into your system, you will
see the machine-language prompt symbol (an asterisk), followed
by a question mark and cursor symbol. Respond by entering a
slash (/).

The screen will then clear and you will see a title message and
an asterisk, indicating that EDTASM is up and ready to go.

165

You can respond at this point by typing anything you choose from
the keyboard. But if the assembler is to be of any use, the things
you type and enter ought to make sense in the context of a few rules.

LINE NUMBERS, ORG, AND END

One important rule is that every assembly-language program must
begin by specifying the origin of that program. The origin actually
spells out the address at which the machine-language program you
develop should begin loading—when, indeed, you load it from cas-
sette tape later on in the process.

A good many T-BUG programs cited in earlier chapters began
at address 4A00H. That is the idea here. You can set the origin of
your machine-language program anywhere you choose within the
system’s available memory space.

Before learning how to specify the origin of the program, it is
important to understand that assembly listings you enter from the
keyboard must have line numbers assigned to them. These line num-
bers serve as convenient identifiers for each line of assembly text
you enter from the keyboard. The numbers are not saved on tape
with the finished machine-language program.

When you are ready to begin entering an assembly program under
EDTASM, the first task is to specify a line number and an interval
between line numbers. It works something like BASIC’s AUTO
command.

Suppose you have just brought up EDTASM as described in the
previous section. To specify the starting line number and interval,
respond to the asterisk by entering something such as 1100,10. This
is telling the assembler to begin numbering the text lines at 100 and
to use increments of 10. After that, the assembler takes care of
numbering the lines for you.

As another example, entering 110,5 tells the numbering scheme
to begin at line 10 and increment in steps of 5.

Here is how the first couple of steps in an assembly programming
operation could appear on the screen:

*1100,10
00100 ORG 4A00H
00110_

In this case the user responded to the asterisk by entering 1100,10.
That set up the line-numbering scheme to begin at line 100 and
increment in steps of 10.

The assembler printed the 00100 following that particular entry.
The 00100 is a five-digit version of the starting line number, 100.

166

You need not specify line numbers with the leading zeros, but the
assembler will always insert them as it goes along.

As mentioned earlier, an assembly program should begin by
specifying the origin of the machine-language program you will
ultimately develop. That is the purpose of the text in line 00100.
Here, the user responded by striking the right-arrow key (—),
typing ORG, striking the right-arrow key again, typing 4A00H,
and, finally, striking the ENTER key. This sequence of operations
completes the necessary process of specifying the program’s origin.
In this case the origin is set at address 4A00H, and when the fin-
ished program is loaded into the system at some later time the
machine codes will begin loading at address 4A00H.

Once the user completes that ORG line and strikes the ENTER
key, the assembler accepts the information and responds by printing
out the next line number.

NOTES

The ultimate origin of a machine-language program generated under
EDTASM must be specified by ORG, followed by the origin address.

The ORG code must be written at the beginning of the second vertical
field on the screen—an effect accomplished easily by striking the right-
arrow key just one time.

If the ORG address is specified as a hexadecimal number, it must be
followed by an H. Otherwise, the assembler will attempt to interpret the
number as a decimal version of the address.

Every assembly program must conclude with an END operation.
Specifically, it must conclude with END, followed by an address.
The END line specifies the entry point of the machine-language
program that you have prepared.

Often the ORG address and END are the same, thus indicating
that the execution of the machine-language program begins at the
lowest address it occupies in RAM. But it is often desirable to
enter a program at an address that is somewhat higher than the
origin. This being the case, the END address will be different from
the one specified in the ORG line.

So here is the simplest possible assembly program as it appears on
the screen:

% 100,10

00100 ORG 4AQ0H
00110 END 4A00H
00120_

167

The program specifies an origin and an entry point. Note that the
END operation, like ORG, must be written at the beginning of the
second vertical field.

This program won’t do anything, because there are no real
machine instructions appearing between ORG and END. The
example merely illustrates how an assembly program is started
and concluded.

NOTES

The END, followed by an address, at the conclusion of an assembly
listing accomplishes two things:
1. The END marks the end of the assembly text.
2. The END address marks the entry point of the machine-language
program being generated under EDTASM.

EDTASM will accept initial line numbers and generate line numbers auto-
matically thereafter in the range of 00000 through 65529,

DELETING AND WRITING PROGRAM TEXT

Every assembly program must begin with an ORG and address
and conclude with an END and address. The actual program text
is fit in between.

If you have actually entered the simple, do-nothing assembly
text illustrated in the previous section, it is necessary to delete it
before beginning the next example. (Program text could be inserted
between those two ORG and END operations, but that sort of
editing function is reserved for a later discussion.)

To delete an entire assembly listing, first strike the BREAK key
to return to EDTASM’s monitor mode. This will break up the
automatic line-numbering operation and return an asterisk. The
asterisk is the prompt symbol for the monitor mode.

Once you are back into the monitor mode you can delete the
entire text by answering the asterisk with D#:% and entering it.
This particular set of characters literally means delete (the D)
from the beginning of the text (#) to (:) the end of the text (k).
This is much the same thing as doing the NEW command in BASIC.

After entering D#:% the system returns an asterisk prompt
symbol, signaling the fact that the system is ready for the next
command. So do the following to get another program-writing opera-
tion underway:

*1100,10
00100 ORG 4A00H
00110

168

With the origin of the program thus specified, you can begin
writing some program text. To keep things simple, suppose you
are working with a one-instruction program that loads 3C00H to the
HL register pair.

So strike the right-arrow key to set the beginning of the instruction
at the start of the second vertical field, then type in the appropriate
instruction, and strike the ENTER key to signal the end of the line
of text. By doing that, the display should look something like this:

*1100,10

00100 ORG 4AC0H
00110 LD HL,3CO0H
00120__

Next, signal the end of the listing by entering END 4A00H:

*1100,10
00100 ORG 4A00H
00110 LD HL,3C00H
00120 END 4AQ0H
00130

This example represents a complete assembly program. It certainly
isnt a very sophisticated program, but it illustrates the general
procedures described thus far.

Notice that the Z-80 instruction is typed as it appears on the
instruction-set listings. The H appearing at the end of the 3C00
address indicates that the number is in hexadecimal. If you omit the
H, the assembler will attempt to interpret it as a decimal number.

Obviously you can enter more than one instruction line. The upper
limit on the number of instructions in the assembly listing depends
on the memory capacity of your TRS-80 system: the larger the
memory capacity, the greater the number of instructions the as-
sembler can handle.

ASSEMBLING THE SOURCE PROGRAM

After entering the assembly program text—the source program—
it is time to let EDTASM assemble it for you. The assembly opera-
tion automatically translates the instructions into machine code and
assigns those codes to the proper address locations.

Assuming you have entered the simple one-line program cited
in the previous section, first return to EDTASM’s monitor mode
by striking the BREAK key. The appearance of the asterisk prompt
character confirms that the system has returned to the monitor.

To assemble the program, answer the asterisk by entering an A
from the keyboard. After that, the screen should show this sort
of display:

169

*1100,10

00100 ORG 4A00H

00110 LD HL,3COOH

00120 END 4AQ0H

00130

kA

4A00 00100 ORG 4AQ0H
4A00 21003C 00110 LD HL,3CO0H
4A00 00120 END 4AO0H

The first phase of the display—the portion showing line numbers at
the left-hand end--is the part you entered as assembly program text.
After doing the BREAK and answering the asterisk with an A, the
listing shows the assembled version of the program.

The assembled portion shows addresses in the first vertical field,
followed by hexadecimal versions of the machine code. The second
field shows the original line numbers for convenient reference, and
the third vertical field shows the original assembly text.

The important feature is the next-to-the-last line that reads: 4A00
21003C. This shows the address location of the beginning of a 3-
byte, machine-language instruction, 21003C. And what does 21003C
mean? It means load 3CO0H to the HL register pair—an operation
originally specified with the mnemonics LD HL,3CO0H. Yes, indeed,
EDTASM assembled LD HIL,3C0O0H into machine code and assigned
it to the ORG address 4A00H. This is the same result you would get
by hand assembling that particular instruction.

Incidentally, if you are actually trying this experiment on your
machine, you will see some additional material, namely:

00000 TOTAL ERRORS
READY CASSETTE

Those messages inform you that you have made no errors in the
assembly listing and that the program has been successfully assem-
bled into machine code. It is then time to save the machine code,
or object code, on cassette tape. If you want to save that one-
instruction, machine-language program on tape, all you have to do
is set up the cassette player for recording a program and then
answer the cursor symbol by striking the ENTER key.

When the assembled program is thus recorded, EDTASM will
return an asterisk, indicating it is back to its monitor mode and
awaiting the next command. But if you don’t want to record the
assembled program, simply strike the BREAK key to return to the
monitor mode.

Now the system is ready to do something else. Perhaps you
want to delete the old program. In that case answer the asterisk
by entering D#: 5. Then you are ready to start all over again, doing

170

something such as 1100,10 to begin writing a new assembly, source-
code program.

SUMMARY

® Striking the BREAK key interrupts the current activity and returns
EDTASM to its monitor mode.

® Inn, sets up the Insert mode, beginning reference line numbers at nn
and incrementing each of them at intervals of { line numbers.

@ ORG addr specifies the address, addr, where the machine-language
program is to begin loading. Every assembly program must begin with
that pseudo-operation.

® END addr specifies the address, addr, where the machine-language
program is to begin execution. It is often the same as the ORG address,
but not necessarily. As demonstrated later, the addr in this pseudo-op
can be replaced by a line label.

® Entering an A from the monitor mode causes EDTASM to assemble
your source-code listing, to convert the mnemonic-oriented source code
into machine addresses and instructions.

This time, write a program that will actually do something. Begin
by answering the asterisk with D#:% and entering it. This ensures
that the old program is wiped out. Then answer the asterisk with
an 1100,10 to begin at line number 100 and set up line increments
of 10. Type in the assembly listing as shown in Program 9-1.

Chances are quite good you won’t be able to type in the entire
listing without making at least one typing error. If that happens,
there are several procedures for correcting it. The following error-
correcting procedure is not the simplest one available, but it is the

Program 9-1. A typical source code listing for EDTASM.

00100 ORG 4AQOH

00110 ToN CALL 01C94 ;CLEAR THE SCREEN
00120 PON LD HL,3CO0H ;SET VIDEO POINTER
00130 LD (HL),42D JPRINT ASTERISK
00140 LD A,H ;MSB OF POINTER TO A
00150 cP 3DH JEND OF QUADRANT?
00160 JR Z,CTID ;IF SO,DO DELAY
00170 INC HL ;ELSE INCREMENT POINTER
00180 JR PON ;AND PRINT MORE

00190 CTD CALL TD ;CALL TIME DELAY
00200 CALL 01C9H ;CLEAR THE SCREEN
00210 CALL TD ;CALL TIME DELAY
00220 JR TON ;AND DRAW AGAIN

00230 1D LD B,OCH iSET MSB OF D

00240 SETC LD C,0FFH ;SET LSB OF TD

00250 DECC DEC ¢ ;COUNT 1SB

00260 JR NZ,DEGC ;IF NOT DONE, DO MORE
00270 DEC B ;ELSE COUNT MSB
00280 IR NZ,SETC ; IF NOT DONE,DO LSB AGAIN
00290 RET ;ELSE RETURN

00300 END LAOOH

71

most straightforward in the context of what has been discussed.
To correct an error in the assembly listing:

1. Strike the BREAK key to return to EDTASM’s monitor mode.

2. Delete the defective line by answering the asterisk with a D,
followed by the appropriate line number. If the problem is in
line 00180, for example, enter D180 (leading zeros need not
be typed in).

3. Insert a corrected version of the line after answering the as-
terisk with an I, followed by the appropriate line number, for
example, 1180. The system is now in the Insert mode and at
the line number you just entered. Type in the corrected version
of the entire line. Inserting a corrected line will usually turn
up a NO ROOM BETWEEN LINES message. Don't worry
about that now; it is simply telling you that the next line in
the sequence has some information in it.

4. With the system back in the monitor mode, as signaled by the
asterisk prompt symbol, you can resume programming by en-
tering Inn, where nn is the next line number you want to
work with.

The error is corrected, and you are back on the right track for
completing the job.

The program in Program 9-1 ultimately causes the system to
draw four lines of asterisks across the top of the screen, making
them flash on and off. But it is far too soon to check its operation.

Line 100 specifies the origin of the machine-language program at
address 4A00H. Line 300, the last line, specifies the entry point at
that same address. In other words, the first address for the program
is the place where execution is to begin.

Line 110 calls the ROM-based operation for clearing the screen.
Notice that the address concludes with the letter H. An H must
follow any data or address that is specified in a hexadecimal format.

NOTE

Following a data or address number with an H specifies a hexadecimal
number.

Following a data or address number with a D, or no letter at all, specifies
a decimal format.

Following a data or address number with an O specifies an octal number.
Hexadecimal numbers must begin with a number, and not a letter.

EDTASM, for example, will not accept data FFH; but it will uhderstand
its equivalent OFFH.

172

So line 110 specifies a screen-clearing operation. It concludes
with a comment. In assembly listings, comments serve the same pur-
pose as REMs in BASIC; they are a convenient way to make some
notes concerning the operations at hand. Comments must be pre-
ceded by a semicolon.

Line 120 sets the video pointer to the first video memory location,
3CO00H. Now that line begins with a label. You can make up your
own labels, following a few simple rules that are spelled out in
the next NOTE. Their true purpose and assembly power won't be
apparent, however, until we get further into this analysis.

NOTE

Labels are used to mark critical points in an assembly program.

A label must follow the reference line number.

A label can be any combination of alphanumeric characters, up to six
and always beginning with an alphabetical character. A $ must not be
used anywhere in a label.

There are some reserved labels that must not be used. See Chart 9-1.

This list of reserved labels corresponds to BASIC’s list of reserved words
that cannot be used as variable names.

Chart 9-1. Reserved Labels for EDTASM*

A X
B Iy
C Sp
D PC
E AF
H BC
L DE
| HL
R

*These letters may be used within a label, but they must not stand alone as a label.

Line 130 prints the asterisk at the point indicated by the HL
pair on the screen. Note that the ASCII character is specified in a
decimal format in this case. A 2AH would work out equally well.

Skipping down to line 160, you find the instruction JR Z,CTD.
That is saying: jump relative if zero to the line labeled CTD. You
don’t have to count the number of bytes to be jumped—ijust specity
the label. This is at least an introductory note concerning the power
of labels in EDTASM. The computer is going to figure out how
many program bytes to be jumped.

173

See the same sort of things taking place in lines 180, 190, 210, 220,
260, and 280. Knowing how to use the labels, you should be able
to work your way through the entire program to see how it works.
Hopefully, the comments will be of great help, too.

In the process of discussing the assembly listing in Program 9-1,
you should be getting some idea about how to use labels and com-
ments. Both serve to simplify the programming operation and clarify
what is going on.

Once the listing is in place as illustrated in Program 9-1, the next
job is to let EDTASM assemble it for you. First, get back to the
monitor by striking the BREAK key; then assemble the program by
entering an A.

The assembled version of the program will be dumped onto the
screen—far too quickly for you to study it. The important thing
now, however, is the number of TOTAL ERRORS. If there are
none, you've done a good job. But if that counter shows some errors,
you have some editing work to do.

Program 9-2 is a hardcopy version of the assembled program. The
program is too long to be seen in its entirety on the screen, so you
will have to use Program 9-2 as a guide for the time being.

Program 9-2. Assembled version of Program 9-1.

4A00 00100 ORG 44004

4A00 C€DCS01 00110 CALL 01C94 ;CLEAR THE SCREEN
4403 21003c 00120 TON LD HL,3C00H 3SET VIDEO POINTER
4A06 362A 00130 PON LD (HL},42D ;PRINT ASTERISK

4A08 7C 00140 LD A,H ;MSB OF POINTER IO A
4A09 TFE3D 00150 CP 3bH ;END OF QUADRANT?
4A0B 2803 00160 JR Z,CTD ;IF 30, DO DELAY
4A0D 23 00170 INC HL ;ELSE INCREMENT POINTER
4LAOE 18F6 00180 JR PON ;AND PRINT MORE

4A10 cDlB4A 00190 CTD CALL TD ;CALL TIME DELAY
4A13 C€DC90L 00200 CALL OLC9H ;CLEAR THE SCREEN
4A16 CDIB4A 00210 CALL TD ;CALL TTME DELAY
4A19 18E8 00220 JRTON ;AND DRAW AGAIN

4A1B 060C 00230 1D LD B,0CH ;SET MSB OF Tb

4A1D OEFF 00240 SEIC LD C,0FFH 3SET LSB OF TD

4AlF 0D 00250 DECC DEC C ;COUNT LSB

4420 20FD 00260 JR NZ,DECC ; IF NOT DONE,DO MORE
4A22 05 00270 DEC B ;ELSE COUNT MSB

4A23 20F8 00280 JR NZ,SETC ;IF NOT DONE, DO LSB AGAIN
4425 C9 00290 RET ;ELSE RETURN

4400 00300 END 4A008

00000 TOTAL ERRORS

DECC 4ALF

SETIC 4ALD

iy 4A1B

CIDb 4A10

PON 4A06

TON 4403

174

Let’s suppose that it turns out that you have made a syntactical
error somewhere in the program; the TOTAL ERRORS message
shows something other than 00000. This means you have to do some
editing. But first you have to find the error.

If you don’t know what the error is, the following procedure helps
you locate it:

1. Get to the monitor by striking the BREAK key.
2. Answer the asterisk by entering A/WE.

Doing this, the system will begin assembling the program again.
This time, however, the /WE part of the command tells the system
to stop assembling when it encounters an error and write a message
describing its nature. You can then figure out what the error is and
correct the error by referring to the appropriate line number.

One method for correcting errors was described earlier. Basically
it amounted to deleting the entire line of text containing the error
and then going to the Insert mode to reenter the entire line from
scratch. There is, however, a simpler way to do the same thing.

EDTASM has a Replace command. Answer the asterisk with an
Rnn, where nn specifies the line number of the line to be replaced.
The system automatically deletes the line for you and waits for
you to type in the corrected version of the line. The R command
takes the place of the Delete/Insert sequence.

The best way to edit a line having just one or two minor errors,
however, is to take advantage of EDTASM’s Edit mode of operation.
This Edit feature works almost exactly the same way as BASIC'’s
EDIT mode.

To get into the Edit mode, answer the asterisk with Enn, where
nn is the line number of the text to be edited. Then use the BASIC-
like EDIT commands to fix the trouble. The Edit instructions in
your Editor/ Assembler Instruction Manual adequately describe all
the Edit commands you will ever need.

Continue doing the A/WE process until there are no longer any
errors in the text. At that time the listing on the screen will resemble
that in Program 9-2.

Notice, incidentally, that the assembled listing ends by speci-
fying the absolute addresses of all the labeled instructions. Label
DECC, for example, refers to the machine instruction beginning
at address 4A1F. Such a listing can be invaluable when it comes
to debugging a very long program.

WORKING WITH THE OBJECT CODE VERSION

After going through the processes described in the previous sec-
tion, the program is still not ready to be tested on line. It must be

175

transferred to cassette tape first and then loaded back into the
machine under the SYSTEM command.

Assembled programs should be saved on tape under a file name.
If you do not specify a file name, EDTASM will automatically assign
NONAME as a file name. But as long as you have control over
matters, it is a good idea to assign a name that means something
significant to you. The following NOTES show a few rules for
composing file names for machine programs written under EDTASM.

NOTES

A file name can be composed of combinations of alphanumeric charac-
ters, not exceeding six characters in length.

The first character must be an alphabetical character.

To assign a file name to a program, get into the monitor mode
and then answer the asterisk by typing an A, followed by one space
and your chosen file name.

The A instructs the system to assemble the program again, but
under the specified file name. A space between the A and file name
is mandatory.

After assembling the program under the designated file name, the
system brings up the message READY CASSETTE. Set up your
tape machine for recording, then strike the ENTER key. Within
just a few moments the system will load the machine-language por-
tion of the program to the tape. None of the assembly text is loaded
this way.

Now, if you are perfectly confident that the program will run as
you expect, and if you are sure you will never want to edit it from
EDTASM at any time in the future, you are done with the assembly
operations.

But you might want to save the assembly text for future reference.
To save the source-code part of the program—the stuff you typed
into the machine originally—do this:

1. Set up the tape machine for recording a program.

2. From the monitor mode, enter W file name, where file name
is a name composed according to the rules outlined earlier.

3. Answer READY CASSETTE by striking the ENTER key.

When the recording is done, you have the assembly text saved
on tape.

The object code listing—the actual machine-language program—
is always recorded immediately after doing an assembly operation.

176

The source code listing can be saved on tape only by going to the
Write mode—entering W file name.

Suppose, for instance, you want to save the object code from
Program 9-2 under the file name OBLINK. To do that, enter A
OBLINK; and when you see the READY CASSETTE, record the
program by striking the ENTER key.

If you want to save the source listing under the file name SBLINK,
enter W SBLINK, and record it by striking the ENTER key in
response to READY CASSETTE.

By this time you have composed and assembled a program with
EDTASM. The machine-language version is saved on cassette tape
as OBLINK, and the source version is saved as SBLINK. Now it
is time to test the program’s actual operation—finally.

Unfortunately, EDTASM has to be destroyed. To get out of
EDTASM, answer the asterisk by entering a B. Entering a B from
EDTASM returns things to the power-up sequence for BASIC.
You will thus see MEMORY SIZE?

Then set up the cassette player for entering the machine-language
version of the program—the one saved as OBLINK. Enter SYSTEM,
and respond to the asterisk by typing OBLINK. The tape will load
the program into the machine and signal the end of the loading
process by showing the usual SYSTEM symbols %?_. Respond by
entering the slash (/)—and, presto, there are the flashing lines of
asterisks.

But wait! There are a couple of problems. EDTASM checked for
syntactical error in the assembly listing, but it did not (and cannot)
check the validity of the program, itself. One problem is that the
asterisks appear to be flashing too rapidly; maybe you would like
to see them flashing at a somewhat lower rate. Then, too, there is
a programming problem that causes an extra asterisk to appear
at the beginning of the fifth line on the screen—it’s a “small” prob-
lem, but one of a type that could cause some real trouble under
different circumstances.

So there is a need to debug the program; the original version
isn’t quite good enough.

Exactly how to go about fixing those problems is often a matter
of opinion. One approach is to load T-BUG and fix the troubles,
using the original EDTASM as a guide to the relevant address
locations. This approach is a good one if the “fixes” aren’t very
extensive (as is the case here). Another nice thing about fixing
things with T-BUG is that you can test the program on the spot.
The only disadvantage is that your original EDTASM listings are
no longer valid.

The second approach is to reload EDTASM, load the source
version of the program into it, and fix it at the assembly level. That

177

way, you end up with fresh listings; but then you have to do a lot
of recording and reloading to see whether or not the “fixes” really
do the job.

In this particular case it seems better to load T-BUG. Load
T-BUG and refer to the listing in Program 9-2 to see what has to
be done to fix the troubles.

To make the time delay longer, and hence get a lower flashing
rate, register B in line 230 can be loaded with CFH, instead of 0CH.
So change address 4A1C from 0C to CF. Do a J 4A00, and you will
see that did, indeed, lower the flashing rate.

The fact that an extra asterisk appears at the beginning of the
fifth line comes about as the result of a common sort of programming
error. Referring to Program 9-2, incrementing the HL register pair
should take place before the H register is tested for a value of 3D.
Thus the operations beginning at line 130 should read:

4A06 362A 00130 PON LD (HL),42D ;PRINT ASTERISK

4A08 23 00140 INC HL ;AINCREMENT POINTER
4A09 7C 00150 tD AH ;MSB OF POINTER TO A
4A0A FE 3D 00160 CP 3DH ;END OF QUADRANT?
4A0C 28 02 00170 JR Z,CTD ;IF SO, DO DELAY

4AOE 18 F6 00180 JR PON ;ELSE PRINT MORE

Everything else is the same before and after this sequence.

In this case we were lucky enough to have the “fix” fit exactly
within the memory space already allocated for the drawing se-
quence. Had there not been enough room, it would be necessary to
do the fix from EDTASM.

So enter the “fix” from T-BUG, changing the data content of
addresses 4A06 through 4AOF as necessary. Doing a J 4A00 will
show that the program works better this time.

The machine-code version can be saved on cassette tape from
T-BUG by using the Punch command. In many instances this marks
the end of the programming job. But, for the sake of illustration,
suppose you want to make the changes from EDTASM instead of
T-BUG. You might use T-BUG to confirm the validity of your
changes, but you want to make corrected versions of the source
listings. Here is how that is done.

First, reload EDTASM from scratch, as described in the opening
part of this chapter. Then, to save some time, load the defective
source code listing.

To load a source listing under EDTASM, answer the asterisk
with L file name. If you specify no file name, the system will accept
the first program loaded from cassette tape. You could, in this
instance, load under the file name, SBLINK—that was the name at-
tached to the original source listing.

178

When the loading is done, as signaled by a new asterisk prompt
symbol, you can confirm entry of the right program by entering
P#: % . That will display the entire source listing on the screen.

NOTE

Under the EDTASM monitor, a P command causes a printing of the
source listing. See the Editor/Assembler Instruction Manual for some useful
variations of the Print command.

The system is now set up so that you can make the necessary
changes in the source listing, using Deletes, Inserts, Replaces, and
Edit commands. A corrected and assembled version of the program
appears as Program 9-3.

OTHER EDTASM COMMANDS AND VARIATIONS

With this sort of experience behind you, you should be able to
learn a lot more from the Editor/Assembler Instruction Manual.

Program 9-3. Assembled and corrected version of Program 9-2.

4A00 00100 ORG 4A00H

4A00 €DC90!l 00110 CALL 0lc9n ;CLEAR THE SCREEN
4403 21003C 00120 ToN LD HL,3C00H 3SET VIDEO POINTER
4406 362A 00130 PON LD (HL),42D sPRINT ASTERISK
4A08 23 00140 INC HL s INCREMENT POINTER
4A09 7C 00150 1D A,H ;MSB OF POINTER TO 4
4A0A FE3D 00160 CP 3bH ;END OF QUADRANT?
4A0C 2802 00170 JR Z,CTD ; IF 50,D0 DELAY
4LAOE 18F6 00180 JR PON sAND PRINT MORE

4A10 CDIB4A 00190 CTD CALL TD ;CALL TIME DELAY
4A13 CDC901 00200 CALL 0lc9d ;CLEAR THE SCREEN
4Al6 CDIB4A 00210 CALL TD ;CALL TIME DELAY
4A19 18£8 00220 JR TON sAND DRAW AGAIN
4418 060C 00230 TD LD B,0CH ;8ET MSB OF TD

4AlD OQEFF 00240 SETC LD C,0FFH ;SET LSB OF TD

4AlF 0D 00250 DECC DEC C ;COUNT LSB

4A20 20FD 00260 JR NZ,DECC ; IF NOT DONE,DO MORE
4422 05 00270 DEC B ;ELSE COUNT MSB

4423 20F8 00280 JR NZ,SETC ; IF NOT DONE, DO LSB AGAIN
4A25 C9 00290 RET sELSE RETURN

4A00 00300 END 4A00H

00000 TOTAL ERRORS

DECC 4A1F

SETC 4A1D

™ 4A1B

CTh 4A10

PON 4406

TON 4403

179

See what you can learn on your own from the following sections
of that manual:

Assemble (A)

BASIC (B)

Delete (D)

Edit (E)

Find (F)

Hardcopy (H)—line-printer applications only
Insert (1)

Load (L)

Number (N)

Print (P)

Replace (R)

Type (T)—line-printer applications only
Scroll up (1)

Scroll down ()

Tab (—)

Delete character (<)

Delete line (shift <)

Pause (shift @)

Write (W)

The best way to get familiar with EDTASM is by actually work-
ing with it, composing interesting programs of your own design.
But if you think EDTASM is a powerful machine-language program-
ming tool at this point, wait until you have a chance to get into the
discussions in the next chapter.

180

CHAPTER 10

Real Assembly Power With Pseudo-Ops

In the context of writing assembly programs, pseudo-ops are
operations that affect the assembly operation but do not appear as
legitimate machine-language instructions. Chapter 9 specified two
pseudo-ops: ORG and END.

ORG and END are operations used by the assembler, but they
do not appear in the assembled, object-code version of the listing.
In a sense they are housekeeping operations for the assembler; they
are important, to be sure, but they are not part of the finished
product—the fully assembled, ready-to-run, machine program.

EDTASM supports a number of other pseudo-ops. They are not
mandatory, as are the ORG and END operations; rather, they save
the programmer a great deal of time and effort.

SIMPLE EQU PSEUDO-OPS

One of the simplest, yet most used, optional pseudo-ops is EQU.
It is used to assign a specific data or address value to a label of
your own invention. Consider the following line of assembly text:

00100 CLs EQU 01C9H ;DEFINE CLS

In this example, label CLS is assigned the 2-byte, hexadecimal ad-
dress 01C9. That particular address, you may recall, is the entry
point for a ROM-based TRS-80 operation that clears the screen and
homes the cursor.

Without taking advantage of the EQU pseudo-op, setting up an
instruction for clearing the screen meant doing a CALL 01C9H

181

in the assembly program. And each time you wanted to use that
instruction, you would have to type it in full.

But by doing a CLS EQU 01C9H at some early point in
the assembly listing, writing an instruction for clearing the screen
is a simple matter of doing CALL CLS. Once a number is assigned
to a label via an EQU pseudo-op, any subsequent references to
that label automatically bring up the value originally assigned
to it. One advantage is that a label such as CLS is certainly easier
to remember than 01C9H when you are in the middle of writing
an assembly program.

Program 10-1. Source and assembled versions of a program that uses simple EQU
operations to define labels.

00100 ORG 4A00H
00110 CLS EQU 01C9H
00120 KBIN EQU 00494
00130 PCHR EQU 033aH
00140 ;BEGINNING OF THE PROGRAM
00150 CALL CLS ;CLEAR THE SCREEN
00160 GET CALL KBIN ;GET A KEYBOARD CHARACTER
00170 CALL PCHR JAND PRINT IT
00180 JR GET JGET NEXT CHARACTER
00190 END 4AO00H
4A00 00100 ORG 4A00H
01G9 00110 CLS EQU 01C9H
0049 00120 KBIN EQU 0049H
0334 00130 PCHR EQU 033AH
00140 ;BEGINNING OF THE PROGRAM
4A00 CDCY01 00150 CALL CLS ;CLEAR THE SCREEN
4A03 CD4900 00160 GET CALL KBIN {GET A KEYBOARD CHARACTER
4406 CD3AD3 00170 CALL PCHR ;AND PRINT IT
4A09 1878 00180 JR GET ;GET NEXT CHARACTER
4A00 00190 END 4A00H

00000 TOTAL ERRORS

GET 4A03
PCHR 033A
KBIN 0049
cLS 01Cc9

By way of a convincing demonstration, type in the assembly
listing in the first part of Program 10-1. That listing begins with
the mandatory ORG pseudo-op, but then there are three optional
EQU pseudo-ops.

The EQU operation in line 110 defines label CLS as 01C9H, the
KBIN label in line 120 is defined as 0049H (entry point for a key-
board character to the accumulator), and PCHR in line 130 is a

182

label assigned to 033AH (entry point for printing a character from
the accumulator and advancing the cursor).

With the critical entry addresses thus defined as labels, the
working part of the program, lines 150 through 180, uses the labels
to work out a simple assembly program: one that clears the video
screen and then allows you to type and print characters from the
keyboard.

The exciting part of the job doesn’t become apparent, however,
until the listing is assembled. See the second part of Program 10-1.

In line 150, for example, CALL CLS is assembled into machine
code CDCY01. Sure enough, there is the actual address that was
assigned to label CLS in an earlier EQU operation (in line 110).
And in lines 160 and 170 you can see that the assembler kept track
of the other addresses as well.

Now there is no longer any need to cite particular addresses or
data values over and over again in an assembly listing. Just assign
the values to a label with an EQU pseudo-op and then cite that label
whenever the number is needed at any later time.

Incidentally, EDTASM allows you to assign decimal numbers
to labels via the EQU operation. This is a handy feature in instances
where you happen to know a value in decimal terms but don’t want
to make the effort to translate it into hexadecimal notation. See Pro-
gram 10-2.

Program 10-2. Assembled listing for a program that illustrates the fact that EQU

can define labels in hexadecimal or decimal terms.

7000 00100 ORG 7000H
0lc9 00110 CLS EQU OlC9H
00BF 00120 CHAR EQU 191

00130 ;BEGINNING OF PROGRAM
7000 CDC90L 00140 CALL CLS ;CLEAR THE SCREEN
7003 060a 00150 LD B,10 sSET COUNTER
7005 21003¢ 00160 LD HL,3C00H s INITIALIZE VIDEQ POINTER
7008 36BF 00170 PLOT LD (HL),CHAR ;PLOT A RECTANGLE
7004 05 00180 DEC B ; COUNTDOWN
700B 20FB 00190 JR NZ,PLOT ;IF NOT DONE, PLOT MORE
700D 18FE 00200 Loop JR LOOP ;ELSE LOOP TO SELF
7000 00210 END 70008

00000 TOTAL ERRORS

LooP 700D
PLOT 7008
CHAR QOOBF
CLS 0lc9

In line 120, label CHAR is assigned, by an EQU operation, the
decimal value 191. Radio Shack lists the graphics codes in decimal,
and this sort of assignment operation avoids the task of determining

183

the hexadecimal version. But notice how the assembler does that
job for you in the machine code in line 170.

EQU OPERATIONS WITH MATH EXPRESSIONS

Simple EQU pseudo-ops let you define a label as some specific
numerical value, but there is more to it. EQU also allows assign-
ments of values that are expressed in a mathematical form. In
BASIC, for example, you can do something such as PRINT A, but
if A has some preassigned value, you can also do PRINT A+2. That
same sort of thing is possible with the EQU pseudo-op.

Suppose you are writing an assembly program that calls for plot-
ting a character at the beginning and end of the top line on the
video screen. You probably know the beginning address, perhaps
because you've used it so many times in the past. Thus a line such as

TSTART EQU 3CO0H

doesn’t put much of strain on your brain. But then you must also
specify the ending address of that line—and you cannot remember it.
Of course, you can figure it out on paper or look it up in a table of
video addresses; it is easier, however, to do something such as this:

TSTART EQU 3CO0H
TEND EQU TSTART +63

Recalling that the end of a horizontal line on the screen is dis-
placed 63 (decimal) character spaces above the starting address
of that line, you can define TEND—the end of the first line—as
TSTART plus 63. And after defining TEND in that fashion, citing
it later in the program will call up the proper address, 3C3F.

Yes, indeed, the EQU pseudo-op can attach the result of a math
expression to a label name, and, what's more, part of that expression
can be another label defined elsewhere in the program.

The EQU pseudo-op can handle both addition and subtraction
expressions. It is possible to use any number and combinations of
+ and — operators. The assembler always executes the operators
in a strictly left-to-right fashion, but it cannot handle a grouping
of operations by parentheses.

See an application in Program 10-3.

The purpose of Program 10-3 is to plot a rectangle of light in the
corners of the screen. The programmer happened to know the ad-
dress of the start of video memory (3CO0H) and the end (3FFFH)
but not the addresses for the points at the upper-right and lower-lett
corners. Rather than taking the time and effort to work it out on
paper, the programmer defined those points with EQU math ex-
pressions. See lines 120 and 140.

184

Program 10-3. Source and assembled versions of a program that shows how
labels can be defined with EQU and math expressions.

00100 ORG 4A00H
00110 TSTART EQU 3C00H ;DEFINE START OF TOP LINE
00120 TEND EQU TSTART+63 ;DEFINE END OF TOP LINE
00130 BEND EQU 3FFFH ;DEFINE END OF BOTTOM LINE
00140 BSTART EQU BEND-63 ;DEFINE START OF BOTIOM LINE
00150 CHAR EQU 191 ;DEFINE CHARACTER
00160 ;BEGINNING OF PROGRAM
00170 CALL 0lc9n ;CLEAR THE SCREEN
00180 LD HL,TSTART ;POINT TO UPPER LEFT
00190 LD (HL),CHAR ;PLOT CHAR
00200 LD HL,TEND ;POINT TO UPPER RIGHT
00210 LD (HL),CHAR ;PLOT CHAR
00220 LD HL,BSTART ;POINT TO LOWER LEFT
00230 LD (HL),CHAR ;PLOT CHAR
00240 1D HL,BEND ;POINT TO LOWER RIGHT
00250 LD (HL),CHAR ;PLOT CHAR
00260 LOOP JR LooP ;LOOP TO SELF
00270 END 4A00H
4A00 00100 ORG 4400H
3¢00 00110 TSTART EQU 3CO00H ;DEFINE START OF TOP LINE
3C3F 00120 TEND EQU TSTART+63 ;DEFINE END OF TOP LINE
3FFF 00130 BEND EQU 3FFFH ;DEFINE END OF BOTTOM LINE
3FCO 00140 BSTART EQU BEND~-63 ;DEFINE START OF BOTTOM LINE
00BF 00150 CHAR EQU 191 ;DEFINE CHARACTER
00160 ;BEGINNING OF PROGRAM
4400 CDCY0L 00170 CALL 01C9H ;CLEAR THE SCREEN
4A03 21003¢C 00180 LD HL,TSTART ;POINT 10 UPPER LEFT
4A06 36BF 00190 LD (HL),CHAR ;PLOT CHAR
4A08 213F3C 00200 LD HL,TEND ;POINT TO UPPER RIGHT
4A0B 36BF 00210 LD (HL),CHAR ;PLOT CHAR
4A0D 21CO3F 00220 LD HL,BSTART ;POINT TO LOWER LEFT
4A10 36BF 00230 LD (HL),CHAR ;PLOT CHAR
4A12 21FF3F 00240 LD HL,BEND ;POINT TO LOWER RIGHT
4A15 36BF 00250 LD (HL),CHAR ;PLOT CHAR
4A17 18FE 00260 LOOP JR LOOP ;LO0P TO SELF
4400 00270 END 4A00H

00000 TOTAL ERRORS

LOOP 4Al17
CHAR 00BF
BSTART 3FCO
BEND 3FFF
TEND 3C3F
TSTART 3C00

The second part of the listing is the assembled version of the
same program. Note the object codes in lines 200 and 220—those
lines calling for the math-generated TEND and BSTART labels.
You can see that the assembler did the figuring for the programmer,
coming up with a hexadecimal value of 3C3F for the upper-right
corner and 3FCO for the lower-left corner.

185

REDEFINING A LABEL WITH DEFL

A label that is defined by an EQU pseudo-op is committed to the
designated value through the entire program listing. Any attempt
to change the value assigned to a label will result in a multiple-
definition assembly error message.

There are occasions, however, when it is desirable to change the
definition of a label during the course of the assembly process. As-
signing values to labels, using the DEFL pseudo-op instead of
EQU, allows this sort of redefinition to take place.

The example in Program 10-4 plots a character at the four corners
of the screen, just as Program 10-3 does. In this example, however,
the character is changed each time.

Program 10-4. Assembled program showing an application of the DEFL pseudo-op.

4400 00100 ORG 4A00H

3¢00 00110 TSTART EQU 3C00H ;DEFINE START OF TOP LINE

3C3F 00120 TEND EQU TSTART+63 ;DEFINE END OF IOP LINE

3IFFF 00130 BEND EQU 3FFFH ;DEFINE END OF BOTTOM LINES

3FCO 00140 BSTART EQU BEND-63 ;DEFINE START OF BOTTOM LINE
00150 ;BEGINNING OF THE PROGRAM

4A00 C€DCY01 00160 CALL 01CH9 ;CLEAR THE SCREEN

4403 21003c 00170 LD HL,TSTART JPOINT TO UPPER LEFT

0041 00180 CHAR DEFL 65 ;DEFINE ‘A’

4A06 3641 00190 LD(HL),CHAR ;PLOT FIRST CHARACTER

4A08 213F3C 00200 LD HL,TEND {POINT TO UPPER RIGHT

0042 00210 CHAR DEFL 66 ;DEFINE 'B'

4AOB 3642 00220 LD (HL),CHAR ;PLOT SECOND CHARACTER

4A0D 21CO3F 00230 LD HL,BSTART ;POINT TO LOWER LEFT

0043 00240 CHAR DEFL 67 sDEFINE 'C'

4A10 3643 00250 LD (HL),CHAR ;PLOT THIRD CHARACTER

4Al2 21FF3F 00260 LD HL,BEND ;POINT TO LOWER RIGHT

0044 00270 CHAR DEFL 68 ;DEFINE 'D'

4A15 3644 00280 LD (HL),CHAR ;PLOT FOURIH CHARACTER

4417 18FE 00290 LOOP JR LOOP ;LO0P TO SELF

4AD0 060300 END 4A00H

00000 TOTAL ERRORS

LOOP 4Al7
CHAR 0044
BSTART 3FCO
BEND 3FFF
TEND 3C3F
TSTART 3C00

In line 180, the DEFL pseudo-op defines CHAR as decimal 65,
the letter A. Line 210 changes the definition to decimal 66, line
240 uses another DEFL to change CHAR to 67, and finally line
9270 sets up the final value of 68.

Of course, it would be easier in this case to omit the CHAR
definitions altogether, loading the desired value in an immediate
fashion—LD (HL),65, for example. But this is merely an illustrative

186

example. And, indeed, the assembler accepts the redefinition of
CHAR in each case.

The DEFL pseudo-op also accepts simple math expressions as
shown in Program 10-5. It accepts the same expressions as the EQU
pseudo-op, and the rules and limitations are the same as well.

Program 10-5. Assembled listing of a program that demonstrates the use of math
expressions with DEFL pseudo-ops.

4400 00100 ORG 4A00H

3¢00 00110 TSTART EQU 3C00H ;DEFINE START OF TOP LINE

3C3F 00120 TEND EQU TSTART+63 ;DEFINE END OF TOP LINE

IFFF 00130 BEND EQU 3FFFH ;DEFINE END OF BOTTOM LINE

3FCO 00140 BSTART EQU BEND-63 ;DEFINE START OF BOTTOM LINE
00150 ;BEGINNING OF THE PROGRAM

4A00 CDC901 00160 CALL 01C9H ;CLEAR THE SCREEN

4403 21003C 00170 LD HL,TSTART JPOINT TO UPPER LEFT

0041 00180 CHAR DEFL 65 ;DEFINE 'A' CHARACTER

4A06 3641 00190 LD (HL),CHAR ;PLOT FIRST CHARACTER

4AD8 213F3C 00200 LD HL,TEND ;POINT TO UPPER RIGHT

0042 00210 CHAR DEFL - CHAR+l ;REDEFINE CHAR

4AOB 3642 00220 LD (HL),CHAR ;PLOT SECOND CHARACTER

4AOD 21FF3F 00230 LD HL,BSTART {POINT TO LOWER LEFT

0043 00240 CHAR DEFL ~ CHAR+1 ;REDEFINE CHAR

4A10 3643 00250 LD (HL),CHAR ;PLOT THIRD CHARACTER

4A12 21FF3F 00260 LD HL,BEND ;POINT TO LOWER RIGHT

0044 00270 CHAR DEFL CHAR+1 ;REDEFINE CHAR

4A1S 3644 00280 LD (HL),CHAR ;PLOT FOURTH CHARAGCTER

4Al7 18¥E 00290 LoOP IR LOOP ;LO0P TO SELF

4400 00300 END 4A00H

00000 TOTAL ERRORS

LOOP 4Al7

CHAR 0044

BSTART 3FCO

BEND 3FFF

TEND 3C3F

TS FART 3C00

It is important to bear in mind that the DEFL pseudo-op alters
the assembly process and not the execution of the machine-language
program being generated. A label that is defined by a DEFL will
carry the assigned value through every line of the assembly listing,
at least until the label is redefined by another DEFL. Note in Pro-
grams 10-4 and 10-5 that CHAR in the label lists carries a value of
0044. Values assigned by DEFL earlier in the program are not listed.

LEAVING MEMORY SPACE WITH DEFS

In earlier chapters dealing with T-BUG programming, it was
explained why it is desirable to leave small blocks of unused mem-
ory at strategic places in a machine-language program. The general
idea was to leave some room for making revisions that might call

187

for fitting in a few extra instructions. As described thus far,
EDTASM does not leave any room between instructions. But that
can be done with the DEFS pseudo-op.

Suppose you are writing a program under EDTASM and you
want to leave eight successive memory locations blank. One part
of the program is to end with eight address locations that are un-
committed and pick up with another part of the program after that.
A line such as SPACE DEFL 8 will do the job. See the illus-
tration of this effect in Program 10-6.

Program 10-6. Assembled listing demonstrating the use of DEFS to allocate some
uncommitted memory bytes.

4A00 00100 ORG 4A00H

4A00 21003C 00110 LD HL,3C00H ;SET VIDEO POINTER

4A03 CDCY01 00120 TON CALL 01C9H sCLEAR THE SCREEN

4A06 CDlA4A 00130 CALL TIME ;DO TIME DELAY

4A09 36BF 00140 LD (HL),191 ;TURN ON THE LIGHT

4ADB CD1A4A 00150 CALL TIME ;DO TIME DELAY

4A0E 18F3 00160 JR TON s AND START ALL OVER

000A 00170 SPACE DEFS 10 ;IEAVE SOME MEMORY SPACE
00180 ;TIME DELAY SUBROUTINE

4A1A 06CF 00190 TIME LD B,0CFH sSET MSB OF TIME DELAY

4AlC OEFF 00200 SETC LD C,0FFH ;SET LSB OF TIME DELAY

4AlE 0D 00210 DECC DEC C ;COUNT LSB

4AlF 20FD 00220 JR NZ,DECC ; IF NOT DONE, COUNT AGAIN

4421 05 00230 DEC B ;ELSE COUNT MSB

4422 20F8 00240 JR NZ,SETC ; IF NOT DONE,COUNT MORE

4A24 CY 00250 RET ;ELSE RETURN

4A00 00260 END 4A00H

00000 TOTAL ERRORS

DECC 4AlE

SETC 4AlC

SPACE 4Al0

TIME 4AlA

TON 4A03

This program causes a small rectangle of light to flash on and oft
in the upper left-hand corner of the screen. A TIME subroutine,
occupying assembler lines 190 through 250, sets the flashing rate.

Line 120 effectively turns off the rectangle of light by clearing
the entire screen, and then line 130 calls the TIME delay subroutine.
After that, line 140 turns on the light, and then line 150 calls the
TIME delay again. The instruction in line 160 returns operations
back to line 120, thus keeping the program running in an end-
less loop.

The whole point of the program, however, is to demonstrate the
application of DEFS. See the assembly instruction in line 170-
SPACE DEFS 10. That assembly instruction tells the system to
leave 10 consecutive memory locations uncommitted. The subse-
quent TIME subroutine thus begins at address 4A1AH, instead of

188

4A10H-an address that would immediately follow the 2-byte in-
struction in line 160.

A DEFS pseudo-op must be preceded by a label in the frst
vertical field. In the example cited here, the label happens to be
SPACE. It can be any valid label name that isn’t used elsewhere
in the program.

DEFS also supports simple math expressions as described for
EQU and DEFL. This provides a means for leaving some uncom-
mitted memory and picking up the next part of the program at some
well-defined address. Suppose, for example, a section of the program
leaves off at address 4A0FH. You don’t care how many successive
memory locations are left unused after that, just so the next part
of the program picks up at address 4A20H. Letting the assembler
figure the number of blank memory locations for you, you can
enter SPACE DEFL 4A20H-4A0FH-1. That will do it.

NOTE

To leave some uncommitted memory space and pick up the program
again at a well-defined address, use a DEFL with the expression:

new starting address - old ending address - 1.

You can use DEFL to leave any number of gaps in the machine-
language addressing. The labels preceding the DEFL pseudo-op
must be different in each case, however.

DEFINING MEMORY CONTENTS WITH DEFB AND DEFW

Certain classes of machine-language programs require fetching
data from a table of some sort. Each item in the table has a specific
address, and it is fetched from the table by loading from its address.
EDTASM’s DEFB and DEFW pseudo-ops allow you to build
tables of 1- and 2-byte data, respectively.

Program 10-7 is another program that really doesn’t do anything
useful, but it does illustrate the building of a small data table.

The data table in this instance consists of the ASCII codes for
letters A, B, and C. The table is built by means of the DEFB pseudo-
ops in lines 110, 120, and 130. For purposes of further demonstration
the three characters are defined in three different ways: as a decimal
version of A (DEFB 65), a hexadecimal version of character B
(DEFB 42H), and as a single-character string enclosed in apostro-
phes (DEFB ‘C’).

189

Program 10-7. Assembled listing that shows the use of the DEFB pseudo-op.

4A00 00100 ORG 4A00H

4A00 41 00110 DEFB 65 ;'A' CHARACTER

4A0 42 00120 DEFB 424 ;'B' GHARACTER

4A02 43 00130 DEFB gt ;'C' CHARACTER

000D 00140 BLAND DEFS 4AIOH-4A02H~1 ;LEAVE SOME SPACE
00150 ;BEGINNING OF 'PROGRAM'

4Al0 3A004A 00160 PROG LD A, (4AQ0H) ;'A' TO ACCUMULATOR

4Al3 3A0l4A 00170 LD 4, (4AD1H) ;'B' TO ACCUMULATOR

4A16 3A024A 00180 LD A, (4A02H) ;'C' TO.ACCUMULATOR

4Al19 18FE 00190 LOOP JR LOOP ;100P TO SELF

4A10 00200 END PROG

00000 TOTAL ERRORS

LOOP 4A19

PROG 4A10

BLAND 4A03

What is more important, however, is the fact that the assembler
assigns the ASCII codes to address locations 4A00H through 4A02H.
A DEFB operation inserts the data byte at the current address. In
this particular instance the ORG sets the beginning of the program
at 4A00H, and since the following operation is a DEFB the data
byte thus defined is automatically assigned to address 4A00H. The
second byte then goes to 4A01H, and the third to 4A02H.

This simple, three-character table concludes with some uncom-
mitted memory space that is generated by the DEFS operation
in line 140.

The actual operating program picks up at line 160—at the PROG
label. It then proceeds to cite the addresses of the data in the table,
calling the content of those three addresses to the accumulator.
So once the data table is built, the contents can be called by merely
citing the appropriate addresses. The only trick, as far as the pro-
grammer is concerned, is to keep track of where the desired data
byte is located in the table.

The data table does not have to be located at the beginning of
the machine-language listing. It can be inserted anywhere you
choose. But since it is located at the beginning of the listing in
Program 10-7, it is absolutely necessary to use the type of END
statement specified in line 200.

When the TRS-80 is executing a program generated under
EDTASM, it must not attempt to execute the contents of a data
table. The table of data must not be treated as instructions—doing
that ensures a total blowup of the program. So to avoid this situation
the END statement specifies the entry point of the actual, executable
part of the program at label PROG, which happens to be at address
4A10H in this case. This procedure is based on the notion that the
END statement specifies the entry point of the program; and this

190

happens to be the first example in the current series of discussions
where it is necessary to start the machine-language listing and exe-
cution of the program at two distinctly different places.

The DEFW pseudo-op works just like the DEFB operation,
except that the former allocates two successive byte locations in
the data table. DEFW is especially useful for building a table of
2-byte address locations.

Program 10-8 uses DEFW pseudo-ops to build a table of 2-byte
addresses. The table begins at address 4A00H and runs through
4A07H. See lines 120 through 150.

The four addresses entered into that table point to the corners
of the video screen. The first 2 bytes point to the upper left-hand
corner, the next 2 point to the upper right-hand corner, then 2
point to the lower left corner, and the last one points to the lower
right. Note that it is possible to define a “word” with a simple math
expression (line 140).

After building this sort of address table the program can call
the 2-byte contents as illustrated in lines 210 through 240. In this
particular example the program plots small rectangles (TRS-80
graphic 191) in the four corners.

BUILDING MESSAGE TABLES WITH DEFM

DEFB allocates a byte of memory for a data byte, DEFW allo-
cates two successive bytes of memory for 2-byte data or address
“words,” and DEFM sets aside an indefinitely large section of

Program 10-8. A bled listing d ating the use of DEFW.

4A00 00100 ORG 4A00H 3SET ORIGIN

00110 ;VIDEQ POINT ADDRESS TABLE
4A00 003¢C 00120 DEFW 3CO0H ;UPPER LEFT
4A02 IFIC 00130 DEFW 3C3FH ;UPPER RIGHT
4A04 CO3F 00140 DEFW IFFFH~63 ;LOWER LEFT
4AD6 FF3F 00150 DEFW IFFFH ;LOWER RIGHT
00BF 00160 CHAR EQU 191 ;DEFINE CHAR
0008 00170 BLANK DEFS 4A10H-4A07H-1 ;LEAVE SOME MEMORY

00180 ;START OF PROGRAM
4A10 CDCY01 00190 DRAW CALL OICOH ;CLEAR THE SCREEN
4A13 IEBF 00200 LD A,CHAR ;SET CHARACTER
4A15 320044 00210 LD (4A00H),A ;PRINT UPPER LEFT
4A18 32024A 00220 LD (4A02h),A ;PRINT UPPER RIGHT
4AlB 32044A 00230 LD (4A04H),A ;PRINT LOWER LEFT
4AIE 32064A 00240 LD (4A06H),A JPRINT LOWER RIGHT
4A21 18FE 00250 LOOP JR LOOP ;LOOP TO SELF
4410 00260 END DRAW
00000 TOFAL ERRORS
LOOP 4A21
DRAW 4Al10
BLANK 4A08
CHAR OO0BF

191

memory for string messages. It would be possible to build a mes-
sage table using DEFB pseudo-ops, but using a single DEFM
line is much simpler. Consider the following comparison:

DEFB ‘H’
DEFB ‘E'
DEFB ‘L’
DEFB ‘L’
DEFB 'O’

Now, if you write some programming that calls the 5 bytes of
data memory generated by that sequence of DEFB operations and
prints them in sequence on the screen, you will end up printing
HELLO. But using a single DEFW operation allows exactly the
same thing to happen in a simpler fashion:

DEFW ‘HELLO’

This will set up the message, HELLO, in some data memory loca-
tions, and the characters can be called to the video screen in
sequence.

Programs 10-9 and 10-10 illustrate an application of the DEFM
pseudo-op. Program 10-9 is the assembly listing as it appears after
entering it, and Program 10-10 is the assembled version.

The program prints three messages: HELLO, NOW YOU SEE
IT, and NOW YOU DON'T. You can find the HELLO designated
with a DEFM pseudo-op in line 110 of Program 10-9, and NOW
YOU SEE IT is defined in a similar fashion in line 130. Note that
those messages are enclosed in apostrophes (as opposed to string-
defining quotes as used in BASIC).

The fact that the NOW YOU DON'T message contains an apos-
trophe thus brings up a minor problem: The assembler will in-
terpret the apostrophe between the N and T in that message as
a closing apostrophe for the message, and it thinks you want to
spell out NOW YOU DON.

Lines 150 through 170 show how to get around that particular
difficulty. Line 150 uses a DEFM operation to spell out the message
up to the point where the apostrophe is to occur. Line 160 then
uses a DEFB pseudo-op to designate the ASCII code for an apos-
trophe. Finally, line 170 uses a DEFB to attach the character T
to the end of the message.

Also notice that each of the three messages concludes with a
DEFB 0 operation. The idea is to mark the end of each message
with some sort of unique character or character code. The zero, or
null character, is used here because it is the same one used to
mark the end of text statements in BASIC. (Recall the discussion
of BASIC text in Chapter 4.)

192

00100
0ol10
00120
00130
00l40
00150
00140
00170
00180
00190
00200
00210
00220
006230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
60590
00600
00610
00620
00630
00640
00650
00660

Program 10-9. Source listing for a program that uses a message table built by

means of the DEFM operations.

ORG 44004
DEFM 'HELLO'
DEF8 0

DEFM 'NOW YOU SEE IT

DEFB 0

DEFM 'NOW YOU DON'

DEFB 39

DEFB 'T'

DEFS 0
sKIpl DEFS 8
CLS EQU 0lc9H
TOP QU 3CO0H
;TIME DELAY SUBROUTINE
TIME LD ¢,0FFH
DECC DEC C

JR NZ,DECC

DEC B

JR NZ,TIME

RET
;MESSAGE SUBROUTINE
CMESS LD A, (DE)

cP 0

RET 2

LD (HL),A

INC DE

INC HL

JR CMESS

DEFS 8
;BEGINNING OF MAINLINE PROGRAM
BLINK CALL CLS

LD HL,TOP

LD DE,4AO0H

CALL CMESS

LD A,OFH
TAGN LD B,OFFH

CALL TIME

DEC A

JR NZ,TAGN
TON CALL CLS

LD HL,TOP

LD (HL), 191

INC HL

INC HL

LD DE,4AO06H

CALL CMESS

LD B,0DFH

CALL TIME

CALL CLS

LD HL,TOP

INC HL

INC HL

LD DE,4Al5H

CALL CMESS

LD B,O0DFH

CALL TIME

JR TON

END BLINK

;SET THE ORIGIN
;DEFINE MESS1

;SET END MARRER
;DEFINE MESS2

;SET END MARKER
;DEF PART OF MESS3
;DEF APOSTROPHE
;DEF 'T!

;SET END MARKER
JLEAVE SOME MEMORY
;DEFINE CLS

;DEF START OF VIDEO

;SET LSB OF TIME
;COUNT ISB OF TIME

; IF NOT DONE,COUNT MORE
;COUNT MSB OF TIME

; IF NOT DONE,COUNT MORE
;ELSE RETURN

;FETCH CHARACTER
;IS IT NULL?

; IF SO,RETURN

;ELSE PRINT CHARACTER
;GO TO NEXT GCHARACTER
;NEXT VIDEO LOCATION
;AND GET NEXT GHARACTER
;SKIP SOME MEMORY

;CLEAR THE SCREEN
3SET VIDEO POINTER
sPOINT TO MESS1
sPRINT IT

;SET UP LONG DELAY

;00 DELAY

;COUNT A

;IF NOT DONE,DO AGAIN
;CLEAR THE SCREEN
;SET VIDEO POINTER
;TURN ON LIGHT
;SPACE

;SPACE

;POINT TO MESS2
JPRINT IT

;SET SHORT DELAY
;D0 DELAY

;CLEAR THE SCREEN
;SET VIDEO POINTER
{SPACE

;SPACE

;POINT TO MESS3
JPRINT IT

;SET SHORT DELAY
;00 DELAY

;AND REPEAT

193

Program 10-10. Assembled version of the message-printing program listing
in Program 10-9.

4A00 00100 ORG 4ADOH ;SET ORIGIN

4A00 48 00110 DEFM 'HELLD' ;DEFINE MESS]

4A01 45

4A02 4C

4A03 4C

4AOL 4F

4A05 00 00120 DEFB [} ;SET END MARKER

4AD6 4E 00130 DEFM ‘NOW YOU SEE IT' ;DEFINE MESS2

4407 4F

4A08 57

4409 20

4AOA 59

4AOB 4F

4AOC 55

4A0D 20

LAOE 53

4AOF 45

4A10 45

4A11 20

4A12 49

4A13 54

4Al4 00 00140 DEFB [} ;SET END MARKER

4A15 4E 00150 DEFM *NOW YOU DON' ;DEF PART OF MESS3

4A16 4F

4A1T 57

4A18 20

4A19 59

4AIA 4F

4AlB 55

4AlC 20

4ALD 44

GAIE 4F

4AlF 4E

4420 27 00160 DEFB 39 ;DEF APOSTROPHE

4A21 54 00170 DEFB 'T ;DEF 'T*

4A22 00 00180 DEFB 0 ;SET END MARKER

0008 00190 SKIP1 DEFS 8 ;LEAVE SOME MEMORY

0lc9 00200 CLS FQU 0l1C9H ;DEFINE CLS

3¢00 00210 TOP EQU 3C00H ;DEF START OF VIDEO
00220 ;TIME DELAY SUBROUTINE

4A2B QEFF 00230 TIME LD C,OFFH ;SET LSB OF TIME

442D 0D 00240 DECC DEC C ;COUNT LSB OF TIME

4A2E 20FD 00250 JR NZ,DEC ; IF NOT DONE,COUNT MORE

4A30 05 00260 DEC B ;COUNT MSB OF TIME

4A3t 20F8 00270 JR NZ,TIME s IF NOT DONE,COUNT MORE

4a33 C9 00280 RET JELSE RETURN
06290 ;MESSAGE SUBROUTINE

4A34 1A 00300 CMESS LD A, (DE) ;FETCH CHARACTER

4A35 FEOO 00310 cP O ;IS IT NULL?Y

4A37 C8 00320 RET 2 ; IF SO,RETURN

4A38 77 00330 LD (HL),A ;ELSE PRINT CHARACTER

4A39 13 00340 INC DE ;GOT TO NEXT CHARACTER

4A3A 23 00350 INC HL ;NEXT VIDEO LOCATION

4A3B 1BF7 00360 JR CMESS JAND GET NEXT CHARACTER

0008 00370 DEFS 8 ;SKIP SOME MEMORY
00380 BEGINNING OF MAINLINE PROGRAM

4445 CDCYG1 00390 BLINK CALL CLS JCLEAR THE SCREEN

4A48 21003C 00400 LD HL,TOP ;SET VIDEO POINTER

4A4B 11004A 00410 LD DE,4A00H JPOINT TO MESSI

4AGE CD344A 00420 CALL CMESS JPRINT IT

4A5) IEOF 00430 LD A,OFH ;SET UP LONG DELAY

4453 O6FF 00440 TAGN LD B,OFFH

4A55 CD2B4A 00450 CALL TIME ;D0 DELAY

4A58 3D 00460 DEC A ;COUNT A

4A59 20FB 00470 JR N2Z,TAGN ; IF NOT DONE,DO AGAIN

4A5B CDCY901 00480 TON CALL CLS ;CLEAR THE SCREEN

4ASE 21003C 00490 LD HL,TOP ;SET VIDEO POINTER

4A61 I6BF 00500 LD (HL),191 JTURN ON LIGHT

4A63 23 00510 INC HL }SPACE

194

4464 23 00520 INC HL ;SPACE

4A65 11064A 00530 LD DE,4AQ6H JPOINT TO MESS2
4A68 CD344A 00540 CALL CMESS JPRINT IT

4A68 06DF 00550 LD B,0DFH 3SET SHORT DELAY
4A6D CO2B4A 00560 CALL TIME ;00 DELAY |
4A70 CDCY0!l 00570 CALL CLS ;CLEAR THE SCREEN
4A73 21003C 00580 LD HL,TOP ySET VIDEQ POINTER
4A76 23 00590 INC HL ;SPACE

4477 23 00600 INC HL s SPACE

4A78 11154A 00610 LD DE,4Al5H ;POINT TO MESS3
4A7B CD344A 00620 CALL CMESS JPRINT [T

4ATE 06DF 00630 LD B,0DFH 3SET SHORT DELAY
4AB0 CD2B4A 00640 CALL TIME ;DO DELAY

4483 18D6 00650 JR TON ;AND REPEAT
4445 00660 END BLINK

00000 TOTAL ERRORS

TON 4AS5B

TAGN 4453

BLINK 4445

CMESS 4A34

DECC 4A2D

TIME 4A2B

0P 3co0

CLs 01c9

SKirl 4423

The “message table” concludes at line 190 by leaving 8 bytes of
unused memory—perhaps for future expansion of that table,

The remainder of the program runs a routine that calls these
string messages. Upon executing it, the screen clears (line 390)
and HELLO appears in the upper left-hand corner of the screen.
That message remains on the screen for about 30 seconds.

When this HELLO phase is done, the program shows a rectangle
of light and the NOW YOU SEE IT message. That one remains in
place for about 1 second. Then the rectangle of light disappears
and the message changes to NOW YOU DON’T. And that message
remains on the screen for about 1 second.

After that, the program alternates between the two latter mes-
sages—at l-second intervals—until you interrupt it by working the
RESET push button.

The program uses two subroutines: TIME (beginning at line
230) does the time-delay operations, and CMESS (beginning at
line 300) calls the messages from the message table and prints them
onto the screen. The main program—the one that controls the overall
operations and calls the subroutines—begins at BLINK (line 390)
and runs through the end of the listing.

The program thus begins with the message table, followed by the
two subroutines and, finally, the mainline program. The entry
point is at BLINK in line 390. How does the computer know it is
to begin running operations from that point? The END BLINK
operation in line 660 defines that entry point.

So when this program is loaded under the SYSTEM command,
it begins actual operation from the BLINK label. That first line

195

clears the screen, then the following lines set the video pointer—
the HL register pair—to the TOP, video address 3CO0H. Line 410
sets the DE register pair to the beginning address of the first mes-
sage, HELLO, and line 420 calls the CMESS subroutine to print
the message onto the screen.

CMESS, beginning at line 300, fetches the first character in the
message, checks to see whether or not it is the end-marking null
character, and returns to the mainline program if, indeed, it sees
that zero character. But if there is more to the message, line 330
prints the character, and the next two lines increment both the
message pointer (the DE pair) and the video pointer (the HL pair).
Line 360 then calls for repeating the message-printing operation.

In short, subroutine CMESS continues printing characters onto
the screen until it finds the end marker—the null character. On re-
turning to the mainline program the next few lines set up and call
the time delay routine, TIME.

The same general procedure applies to printing the NOW YOU
SEE IT and NOW YOU DON'T messages. The trick, as far as the
programmer is concerned, is figuring out where the messages begin
in the message table.

The HELLO message certainly begins at 4A00H, because that is
where the ORG operation begins loading. But where does NOW
YOU SEE IT begin? You can count the characters in the message,
add an extra count for the end marker, and figure the address of
the next message. This is tedious and offers a fine opportunity to
make a serious mistake.

A better way to determine the starting addresses of messages
in a message table is to do an assembly operation immediately after
the table has been entered into the assembler. After typing in lines
100 through 180, for example, do an A/WE. You will get a NO
END STATEMENT message, but that isn't important. What is
important is the way the message table is assembled. See the as-
sembled table in lines 100 through 180 in Program 10-10.

In this assembled listing, you can see that HELLO is assembled
as hexadecimal ASCII codes in addresses 4A00H through 4A04H.
The null character then appears in address 4A50H, and NOW YOU
SEE IT begins at 4A06H. The latter address is the starting point
for printing out that particular message.

Then at address 4A15H, you find the beginning of the NOW YOU
DON’T message.

So the entry points for printing the messages are thus identified
for you. It is therefore a good idea to enter such a table first and
assemble it before writing the portions of the program that must
call the message strings. This way, you know the exact starting
addresses for all the messages.

196

CHAPTER 11

Putting It All Together

Only the simplest BASIC and machine-language programs are
developed as a one-shot operation. All but the most modest pro-
grams ought to be built in a piecemeal fashion, with the loading and
testing of critical sections before integrating them into an increas-
ingly complex and useful master program.

This chapter demonstrates some approaches to composing rela-
tively complicated programs. Although the examples, themselves,
hardly reach staggering proportions, they illustrate the overall spirit
of devising programs of any size.

The whole TRS-80 ROM system is built around a lot of general-
purpose routines. A number of examples cited earlier in this book
take advantage of some of those routines.

In many instances, however, a TRS-80 ROM routine cannot be
run until some important parameters are loaded into specified
RAM locations. As the ROM routine is executed, it calls those pa-
rameters as they are needed to transform a general set of operations
into a very specific one. That is the approach featured in this
chapter.

The examples in this chapter are all oriented toward video
graphics, but the general ideas apply equally well to any sort of
i/ o medium.

BUILDING A GENERAL-PURPOSE FILL ROUTINE

One of the most useful graphics routines is one that draws blocks
of characters on the screen. It should allow the programmer to
specify the position and dimensions of the graphic as well as the
character type it is built from. Once those parameters are entered

197

into some well-defined RAM locations, the general-purpose FILL
routine uses them to draw the graphic. The routine can draw any
graphic—the RAM parameters determine its nature.

So when you want to draw some figures on the screen, first build a
RAM table of all the parameters and then call the FILL routine.

Program 11-1 is an assembled version of a FILL routine. It
includes the essential elements of a general-purpose routine, includ-
ing some goofproofing operations that prevent the system from going
crazy in the event of a programming error.

The program allocates a 5-byte RAM table for the critical param-
eters:

4A00 CHARACTER TYPE

4A01 LSB OF STARTING ADDRESS

4A02 MSB OF STARTING ADDRESS

4A03 NUMBER OF CHARACTERS PER LINE
4A04 NUMBER OF LINES

CHARACTER TYPE determines the alphanumeric or graphic
character to be used for drawing the figure on the screen. It can be
any hexadecimal number between 20H and FFH. If no specific
CHARACTER TYPE is designated by the programmer, the routine
automatically sets up 191 (decimal). See line 120 in the listing.

The FILL routine builds the graphic by scanning one character
space at a time, from left to right, across the screen. When one
line is done, it begins the next line directly below the starting point
of the previous one. This scheme means it is necessary to designate
a starting point, a line length, and the number of lines.

The START ADDRESS is loaded into the parameter table at ad-
dresses 4A01 and 4A02. It can be any 2-byte hexadecimal number
but, of course, it ought to be within the video memory space—
3CO0H through 3FFFH. Since any attempt to “draw” a figure
outside the video memory space can cause some serious blowups of
existing programs, you will find that the FILL routine includes a
goofproofing feature to prevent such a disaster. But more about
that later.

As shown in line 130, the START ADDRESS defaults to 3CO0H.
Unless the programmer designates a different one, the routine be-
gins drawing the graphic in the upper left-hand corner of the screen.

With the CHARACTER TYPE and START ADDRESS thus
specified, all that remains in the parameter table is NO. OF LINES
and CHAR PER LINE. These are both 1-byte hexadecimal num-
bers located at addresses 4A03H and 4A04H, respectively. If no
parameters are entered by the programmer, lines 140 and 150 in
the listing show that the default NO. OF LINES is 2, and CHAR
PER LINE is 4.

198

4400
4400
4401
4402
4403
4A05
4A06
4A07
4408
4409
4A0A
4A0B
4A0C
440D
4A0E
4AQF
4A10
4A13
4Al6
4419
4AlA
4ALD
4A1E
4A21
4A22
4A23
4424
4425
4428
4429
4A2C
0001
4A2F
4A30
4A31
4A34
4A35
4438
0001
4438
4A3D
4A3E
440
4441
4AL3
4AL5
4AL8
0002
4ALB
4ALE
4A51
4452
4A54
4A56
4A57
4458
4A59
4A5B
4A10

00000

BF
003c
02

04

46

49

4C

4C

20

4F

46

4C

4F

57

00
2A0144A
CD3B4A
340344
47
3A044A
4F
3A004A
54

5D

77

0D
CA2F4A
23
CD3B4A
18F5

05

c8
214000
19
CD3B4A
18E0

3E3F
BC
3808
7C
FE3C
3806
3A004A
c9

21003¢
110544
¥:
FEOO
2805
77

23

13
18F6
18FE

00100
00110
00120
00130
00140
00150
00160

00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600

TOTAL ERRORS

Program 11-1. Assembled listing for FILL2.

;FILL ROUTINE -- VER 2: FILENAME FILL2

ORG 4A00H
DEFB 191 ;CHARACTER TYPE
DEFW 3C00H ;START ADDRESS
DEFB 2 ;NO. OF LINES
DEFB 4 ;CHAR PER LINE
DEFM 'FILL OFLOW' ; OVERFLOW MESSAGE
DEFB 0 ;ALWAYS 'O
FILL LD HL,(4AOlH) ;FETCH START ADDR
CALL OFLO ;VALID POINTER?
LD 4, (4a038) ;FETCH NO. OF LINES
LD B,A ;NO. OF LINES TO B
LINE LD A, (4A04H) ; FEICH CHAR/LINE
1 C,A ;CHAR/LINE TO C
LD A, (4A00H) s FETCH CHAR TYPE
LD D,H ;SET LINE START
Lb E,L
PLOT LD (HL),A ;PLOT CHARACTER
DEC C ;DECREMENT CHAR COUNT
JP Z,NLINE ;IF DONE, DO NEXT LINE
ING HL JELSE INCREMENT POINTER
CALL OFLO ;CHECK FOR OVERFLOW
JR PLOT ;AND PLOT AGAIN
DEFS 1
NLINE DEC B ;DECREMENT LINE COUNT
RET 2 {RETURN IF DONE
LD HL,64 ;SET LINEFEED
ADD HL,DE ;START OF NEW LINE
CALL OFLO ;CHECK FOR OVERFLOW
JR LINE ;PLOT NEW LINE
DEFS 1
OFLO LD A,3FH ;SET MAX MSB OF VIDEO
cP H ;LESS THAN MSB OF VIDEQO?
JR C,FLOMES ;IF SO,PRINT MESSAGE
LD A,H ;GET MSB OF VIDEO
CP 3CH ;UNDERFLOW?
JR C,FLOMES ;IF SO,PRINT OFLO
LD &, (4A00H) ;ELSE RESTORE CHAR TYPE
RET ;AND RETURN
DEFS 2
FLOMES LD HL,3CO0H ;ELSE SET VIDEO POINTER
LD DE,4A05H ;POINT TO MESSAGE
MESCHR LD A, (DE) ;GET MESSAGE CHAR
cP 0 ;DONE?
JR 2, L00P ;IF S0,L00P TO SELF
LD (HL),A ;PRINT CHAR
INC HL ;ELSE NEXT MESS CHAR
INC DE
JR MESCHR
LOOP JR LOOP ;LOOP TO SELF
END FILL

199

Loor 4A5B
MESCHR 4A51

FLOMES 4A4B
NLINE 4A2F
PLOT 4423 N
LINE 4AlA ‘
OFLO 4A3B
FILL 4Al0

The point of this part of the discussion is to show the following
principles in action:

1. Most general-purpose routines require a table of working
parameters that can be called as the routine is executed.

2. The items in the parameter table must have well-defined and
documented addresses (a programmer must know the address
and purpose of each item in order to preset them).

3. The program should be written so that the items in the
parameter table have valid values from the outset. These
determine the default parameters, and leaving them undefined
can cause serious problems.

4. Each item in the parameter table should be documented in
terms of allowable values. Either that, or the routine should
be written so that invalid parameters will not cause a total
blowup of the program.

Before running the FILL routine, then, the programmer should
preset the items in the parameter table. They can, for instance, be
preset by means of POKE statements under BASIC, or they can
be set directly under T-BUG. When the FILL routine is finally used
as part of a larger graphics program, however, the parameters will
be set by means of some LD instructions to the appropriate ad-
dresses.

Line 160 sets up a FILL OFLOW message that is called when-
ever the FILL routine attempts to plot a character outside the
video memory range. As described later, that message appears in
the upper left corner of the screen whenever such an overflow (or
underflow) occurs.

The entry point of the FILL routine is at line 180, address 4A01H.
That address must be part of the routine’s documentation; any pro-
grammer must know where the routine begins its execution.

That first working instruction loads the START ADDRESS into
the HL register pair. It does that by fetching the 2-byte address
beginning at 4A01H. The next instruction checks that parameter to
see whether or not it is a valid one—somewhere within the video

200

memory space. This is done by calling a subroutine labeled OFLO
(see line 410).

Assuming the START ADDRESS is valid, the program resumes
operation at line 200. The instruction in that line fetches the NO.
OF LINES parameter from the parameter table, and the next in-
struction loads it to register B. Register B then keeps track of the
number of lines yet to be drawn.

Line 220 marks the beginning of the line-drawing part of the
routine. It begins by fetching the CHAR PER LINE parameter
from the parameter table, and then loading it into register C. Then
line 240 fetches the CHAR TYPE to register A,

The current-line starting address is saved in the DE register
pair by the instructions in lines 250 and 260. The routine must
“remember” the starting address of each line so that it can set
the start address of the next one later on.

Finally, the plotting operation begins at line 270, The CHAR
TYPE is loaded to the screen at an address determined by the
content of the HL register pair. Then CHAR/LINE is decremented
and checked for its end. If it so happens that register C is not
decremented to zero, operations pick up at line 300.

The INC HL in line 300 sets the video pointer to the next char-
acter space. CALL OFLO checks to see whether or not the opera-
tion will run the pointer out of video memory; if not, operations
loop back to PLOT, and another character is loaded to the screen.

Operations continue looping in the PLOT sequence until one of
two things happen: either register C decrements to zero, indicating
a line is done, or the HL pointer increments out of video memory
space. In the latter case the system prints FILL OFLOW and goes
into a harmless loop. In the former case—the more desirable one—
line 290 jumps operations to NLINE.

NLINE begins a series of instructions that reset the drawing
operation to the beginning of the next line to be drawn. The NO.
OF LINES register, register B, is first decremented (line 340 in
the listing). If B is not yet zero, 64 (decimal) is added to the
starting address of the previous line. CALL OFLO in line 380 checks
for a possible overflow out of video memory, and then line 390
returns operations to the LINE routine.

Assuming that no overflows occur, the routine runs until all lines
have been drawn: until register B is decremented to zero and the
RET Z in line 350 is satisfied. At that time, control returns to the
program that called FILL in the first place.

The OFLO routine, beginning at line 410, checks the current
value of the video pointer (the HL register pair) for an address
that is outside the video memory space. If that fault condition
occurs, operations pick up at FLOMES in line 500.

201

FLOMES and MESCHR print the FILL OFLOW message stored
in 4A05H through 4A0FH, using methods already described in some
earlier examples. (See Chapter 10.) And once the overflow message
is printed, LOOP in line 590 causes the program to “buzz” on that
one instruction until the programmer operates the RESET push
button. Having the program latch up in this safe fashion is far better
than letting it wander off into undefined portions of memory, thus
running the risk of losing a lot of programming,.

If you want to work through the examples in this chapter on a
first-hand basis, load the listing in Program 11-1 under EDTASM,
check for errors, and then save the object code with the file name
FILL2. The source version can then be saved on tape as SFILL2.

Chart 11-1 illustrates the sort of documentation required for
general-purpose routines and FILL2 specifically. Such information
is just as valuable as the recorded program, itself.

Chart 11-1. Overall Documentation for the FILL2 Routine

Memory Location: 4AQ0H~4A5BH (86 bytes)
Entry Point: 4AT0H
Parameter Table:
4A00H CHARACTER TYPE (1 byte)
4A0TH START ADDRESS (2 bytes)
4A03H NUMBER OF LINES (1 byte)
4A04H NUMBER OF CHARACTERS PER LINE (1 byte)

Aside from the use of a parameter table, there is little involved
in the construction of this FILL routine that hasn’t been discussed
to some extent in earlier chapters.

The only “problem” with FILL, as it is shown in Program 11-1,
is that it cannot be executed alone. The RET Z instruction in line
350 marks the end of the routine, and it spells out a return to a
calling program. But what calling program? There is none. You
have to write a calling program in order to use a general-purpose
routine of this sort.

A calling routine for FILL is shown in Program 11-2. The program
is so short that you might be ahead of the game by loading it under
T-BUG--it is intended to work in conjunction with T-BUG anyway.
So you could do this:

Load FILL2 under system.

. Respond to %k ? at the end of the loading of FILL2 by operating
the RESET push button.

. Load T-BUG under system.

. Respond to *? by entering a slash (/). That will bring up
T-BUG.

N

202

Program 11-2. A test routine for FILL2.

00100 ;FILL TEST ROUTINE ~- VER 1 -~ FILENAME FLTSTI
7000 00110 ORG 70004
7000 CDC901 00120 FLTSTI CALL OlC9H ;CLEAR THE SCREEN
7003 CD104A 00130 CALL 4AI10H ;CALL FILL2
7006 3A4038 00140 KB LD A, (3840H) ; LOOK AT KEYBOARD
7009 FEOL 00150 CPp 1 ;IS IT ENTER?
700B C20670 00160 Jp NZ,KB ; IF NOT,LOOK AGAIN
700E C3A043 00170 JP 17312 ;ELSE JUMP TO T-BUG
7000 00180 END FLTSTIL

00000 TOTAL ERRORS

Now FILL2 and T-BUG are both resident in the system. Load
the object code in Program 11-2, using the “M” function of T-BUG.

Next, try out the default parameters with FILL2 by doing a
J 7000 from T-BUG. Referring to Program 11-2, this will clear the
screen, execute the FILL2 routine, and then hold the graphic on
the screen until you strike the ENTER key (see lines 140 through
160). On striking the ENTER key, line 170 does a jump back to
T-BUG. From there, you can make any corrections in FILL2; and
if FILL2 did, indeed, draw a white rectangle in the upper-left
corner of the screen, you are in a position to use T-BUG for setting
some of FILL2’s parameters to suit your own specifications.

While running from T-BUG, you can alter the parameter table ac-
cording to the description in Chart 11-1. And when you've set up
some of your own parameters, do another] 7000 to bring up the
FLTSTI routine. It, again, will do the FILL operation you specified,
and it will hold the figure on the screen until you strike the ENTER
key to get back to T-BUG.

This notion of using FILL2, T-BUG, and the FLTST1 testing
routine together leads to a powerful programming aid. It lets you
tinker with the parameters to come up with any sort of graphic
you want. The present scheme allows only one graphic to be dis-
played at any given time, but you can keep track of the parameters
for any number of graphics. As demonstrated in the next section,
they can be all worked together into a single program.

The testing routine, incidentally, can also be written under
EDTASM. Saving its object code as FLTST1 makes it available for
future use. Assuming, then, that you have FLTST1 available on
tape, you can set up the test scheme as follows:

1. Load FILL2 under SYSTEM.

2. Respond to x? at the end of loading by operating the RESET
push button.

3. Load FLST1 under SYSTEM.

4. Respond to %P at the end of its loading by operating the
RESET push button.

203

5. Load T-BUG under SYSTEM.
6. Respond to %P at the end of its loading by entering a slash (/).

Now you can run the tests and determine FILL2 parameters as
described earlier.

APPLYING AND REFINING FILL2

Table 11-1 shows the FILL parameters for drawing the four
segments of a rectangular border figure. They were each generated
by means of the technique just described—using Program 11-2 in
conjunction with FILL2 and T-BUG. Now the trick is to work out
yet another program that loads these parameters into the FILL2
parameter table and to draw them onto the screen. The idea is to
run FILL2 four times in succession, loading the parameters for each
of the rectangle elements.

Table 11-1. Memory Map for the FILL Parameter Table

Parameter Addresses
Graphic 4A00 4A01 4A02 4A03 4A04
Top line 83 00 3C 01 40
Bottom line BO co 3F 01 40
Left line BF 00 3C 10 01
Right line BF 3F 3C 10 01

At this point the most straightforward way to build a rectangle-
drawing program is under T-BUG. The program could, of course,
be assembled under EDTASM, but T-BUG is already resident and
the program is rather short. So why not try it with the tools already
at hand? If it works, then it can be documented and assembled
under EDTASM, prehaps with some refinements to FILL2.

A hand-assembled version of the rectangle-drawing program
is shown as Program 11-3. With FILL2 loaded into the system,
enter this program under T-BUG.

The program is divided into three basic sections: SET UP FILL
ROUTINE, FIGURE TABLE, and DRAWING ROUTINE. FIG-
URE TABLE contains the four sets of parameters for the rectangle
figure. Those parameters are to be loaded into FILL2's parameter
table.

Referring to the DRAWING ROUTINE, it begins by clearing the
screen, then pointing to the address of the first byte of data to be
transferred from the FIGURE TABLE to FILL2’s parameter table.
The third line in the DRAWING ROUTINE then calls SET UP
FILL ROUTINE.,

204

Program 11-3. Assembled listing for a rectangle-drawing routine.

KB 7006

FLTST1 7000

3SET UP FILL ROUTINE

4460 11 00 4A LD DE,4AO0H ;BEGINNING OF DESTINATION
4A63 01 05 00 Lb BC,SH ;NO. OF BYTES TO LOAD

4466 ED BO LDIR ; LOAD FILL PARAMETERS

4A68 CD 10 4A CALL FILLZ ;DO FILL

4A68 C9 RET sRETURN TO CALLING PROGRAM

; FIGURE TABLE

4470 83 00 3C 01 40
4A75 BO CO 3F 0l 40
4A74 BF 00 3C 10 0Ol
4A7F BF 3F 3C 10 Ol

;DRAWING ROUTINE

7100 ¢b €9 01 CALL 01C9H ;CLEAR THE SCREEN
7103 21 70 44 LD HL,4A70H ;BEGINNING OF SOURCE
7106 CD 60 4A CALL 4A60H ;DRAW TOP LINE

7109 21 75 4A LD HL,4A75H ;SET UP BOTTOM LINES
710C CD 60 4a CALL 4A60H ;DRAW BOTTOM LINE
710F 21 7A 4A LD HL,4A7AH 3SET UP LEFT LINE
7112 CD 60 4A CALL 4A60H ;DRAW LEFT LINE

7115 21 7F 4A LD HL,4A7FH 3SET UP RIGHT LINE
7118 CD 60 4A CALL 4A60H ;DRAW RIGHT LINE
7118 18 FE Loop JR LOOP ;LOOP TO SELF

SET UP FILL ROUTINE first points to the beginning of FILLZ’s
parameter table, loads the number of bytes to be transferred, and
then uses an LDIR instruction to make the transfer. By the time the
program reaches the CALL FILL2 instruction, the parameters for
the top line of the rectangle reside in FILL2’s parameter table.
Doing the CALL FILL2 then causes the system to draw that top
line.

On returning to the DRAWING ROUTINE the system picks up
the starting address for the second sequence of parameters—those
required for drawing the bottom portion of the rectangle. And then
it does the SET UP FILL ROUTINE again.

The scheme continues cycling in this fashion until the drawing
is done. The final instruction in the DRAWING ROUTINE brings
things to a halt by looping to itself. It is thus necessary to operate
the RESET push button to get out of the loop; and returning to
T-BUG is a matter of entering /17312 under the SYSTEM command.

So enter the instructions listed as Program 11-3. With both T-BUG
and FILL2 also resident in the system, execute the program from
T-BUG by doing a J 7100.

It should be apparent that any program using FILL2 to draw
moderately complex figures should use the SET UP FILL ROUTINE

205

and a FIGURE TABLE. The DRAWING ROUTINE will be differ-
ent for every drawing program you devise, as will the FIGURE
TABLE. But the SET UP FILL ROUTINE will remain the same, no
matter what sort of figure you want to draw.

This leads to the notion that the SET UP FILL ROUTINE ought
to be fit right into the FILL routine. It would also be nice if the
FIGURE TABLE could be permanently defined at the end of that
revised FILL routine. Things are tightened up this way in Pro-
gram 11-4.

FILL3 is a revised version of the original FILL program. It has
the T-BUG-tested SET UP FILL edited into the opening phase
(lines 180 through 200) and a set of default FILL parameters de-
fining the beginning of the FIGURE TABLE at the end (lines
640 through 680).

Using FILL3 is thus a matter of building an appropriate FIGURE
TABLE, beginning at address 4A70H, and writing a calling program
at some higher address location. Chart 11-2 documents the entry
point and memory map for FILL3.

Chart 11-2. Overall Documentation for the FILL3 Routine

Memory Location: 4A00H-4A64H (101 bytes)
Entry Point: 4A10H
Figure Table: 4A70H-4AFFH (160 bytes)

NOTE: Prior to calling FILL3, the HL register pair must point to the first of 5 bytes of the FILL
parameters.

The notion of writing one program, using it and testing it for a
while, and then revising the original program is the usual procedure
for building up truly useful machine-language programs. The
various sections can be written under either EDTASM or T-BUG,
depending on how extensive they are; more complex routines are
better written under EDTASM. But they are tested and coordinated
under T-BUG in order to provide instant feedback between tests
and small modifications.

With the various sections thus written and debugged, they can
be merged into a single program under EDTASM. In the previous
example, FILL3 was generated by first loading FILL2 under
EDTASM and then using EDTASM’s editing features to add in the
new sections. The result is a single program and an object code
tape that loads the entire FILL3 routine.

Program 11-5 is an example of a program that calls the FILL3
routine to draw a rectangle on the screen. It begins by'filling the
FIGURE TABLE with the parameters for the rectangular figure
(the same ones used in Program 11-3). The DEFS pseudo-op in

206

4A00
4A00
4401
4A03
4A04
4405
406
4A07
4A08
4A09
4A0A
4A0B
4A0C
4A0D
4AOE
4AOF
4A10
4A13
4416

4A18
4A1B
4AlE
4421
4A22
4425
4426
4429
4824
4A2B
4A2C
4A2D
4A30
4431
4A34
0001
4A37
4A38
4439
4A3C
4A3D
4A40
0001
4A43
4A45
4A46
4a48
4AL9
4A4B
4A4D
4A50
0002
4453
4A56
4459
4A5A
445C
4ASE
4ASF
4460
4461
4A63
0008

BF
003¢
02

04

46

49

4C

4C

20

4F

46

4C

4F

57

00
110044
010500
EDBO

240144
CD434A
3A034A
47
34044A
4F
3A004A
54

5D

77

oD
CA374A
23
CD434A
18F75

05

c8
214600
19
CD434A
18E0

3EIF
BC
3808
c
FE3C
3806
3A004A
c9

21003C
11054A
1A
FEQO
2805
77

23

13
18F6
18FE

00100
00110
00120
00130
00140
00150
00160

00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00230
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640

Program 11-4. Assembled listing for FILL3.

;FILL ROUTINE ~- VER 3: FILENAME FILL3
ORG 4A00H
DEFB 191 ;CHARACTER TYPE
DEFW 3CO0H ;START ADDRESS
DEFB 2 ;NO. OF LINES
DEFB 4 ;CHAR PER LINE
DEFM 'FILL OFLOW' ; OFLOW MESSAGE
DEFB 0 JALWAYS '0'
SETUP LD DE,4AQ0H ;POINT TO PARAM TABLE
LD BC,5H ;SET NO. BYTES TO LOAD
LDIR {XFER FROM FIG. TO PAR. TABLE
;DO THE FILL ROUTINE
FILL LD HL,(4AO01H) ;FETCH START ADDR
CALL OFLO ;VALID POINTER?
LD A, (4A03H) ;FETCH NO., OF LINES
LD B,A ;NO, OF LINES TO B
LINE LD A, (4A04H) ;FETCH CHAR/LINE
LD C,A ;CHAR/LINE TO €
LD A, (4A004) s FETCH CHAR TYPE
LD D,H ;SET LINE START
LD E,L
PLOT LD (HL),A sPLOT CHARACTER
DEC ¢ ;DECREMENT CHAR COUNT
Jp Z,NLINE s IF DONE, DO NEXT LINE
INC HL ;ELSE INCREMENT POINTER
CALL OFLO ;CHECK FOR OVERFLOW
JR PLOT ;AND PLOT AGAIN
DEFS 1
NLINE DEC B ;DECREMENT LINE COUNT
RET Z ;RETURN IF DONE
LD HL,64 ;SET LINEFEED
ADD HL,DE ;START OF NEW LINE
CALL OFLO ;CHECK FOR OVERFLOW
JR LINE ;PLOT NEW LINE
DEFS 1
OFLO LD A, 3FH ;SET MAX MSB OF VIDEO
cPH JLESS THAN MSB OF VIDEO?
JR ©,FLOMES ;IF SO,PRINT MESSAGE
LD A,H ;GET MSB OF VIDEO
CP 3CH ;UNDERFLOW?
JR C,FLOMES ;IF SO, PRINT OFLO
LD A, (4A00H) ;ELSE RESTORE CHAR TYPE
RET ;AND RETURN
DEFS 2
FLOMES LD HL,3C00H ;ELSE SET VIDEOG POINTER
LD DE,4AO5H ;POINT TO MESSAGE
MESCJ LD A, (DE) ;GET MESSAGE CHAR
cp 0 ;DONE?
JR Z,L00P ; IF S0,L00P
LD (HL),A sPRINT CHAR
INC HL ;ELSE NEXT MESS CHAR
INC DE
JR MESCHR
Loop JR LOOP ;100P TO SELF
DEFS 4AJ0H-4A64H-1 ;START OF FIG. TABLE

207

4A70 BF 00650 DEFB 191

4A71 003C 00660 DEFW 3C00H
4A73 02 00670 DEFB 2
4ATh 04 00680 DEFB &
4A18 00690 END FILL
00000 TOTAL ERRORS

Loop 4A63

MESCHR 4A59

FLOMES 4A53

NLINE 4A37
PLOT 4A2B

LINE 4A22
OFLO 4A43
FILL 4Al18
SETUP 4A10

line 330 then skips over a lot of unused FIGURE TABLE memory,
thus beginning the actual program at address 7000H. With this
REC1 and FILL3 resident in the system, executing from address
7000H causes the rectangle figure to appear on the screen.

The object codes for FILL3 and RECI1 can be saved separately
on cassette tape. Getting the program running is then a matter
of going through the following procedure:

1. Load FILL3 under the SYSTEM command.

2. Answer the kP at the end of the loading operation by operat-
ing the RESET push button.

3. Load RECI under the SYSTEM command.

4. Answer the *%? at the end of the loading operation by ENTER-
ing a slash or doing /28672.

BUILDING A GENERAL-PURPOSE MOVE ROUTINE

Most animated graphics programs can be built around general-
purpose FILL and MOVE routines. The FILL routine has just
been described, and this section takes up the matter of a MOVE
routine. In this case the idea is to move simple figures in any de-
sired fashion on the screen. See the MOV1 routine in Program 11-6.

MOV1 has the same basic elements as the general-purpose FILL
routines-a parameter table (4B00H through 4B04H) and a routine
that uses those parameters (4B10 through 4B3E).

The parameter table consists of an address indicating the current
video point on the screen, another address indicating the, next video
address, and a 1-byte motion code that indicates the direction of
motion. Generally speaking, the program fetches the current video
address (CPNT) and the motion code { MCODE) from the param-

208

Program 11-5. Assembled listing for RECI.

00100 ;RECTANGLE -DRAWING SUBROUTINE -- VER 1:FILENAME RECI

4A70 00110 ORG 4A70H
00120 ;LOAD FIGURE TABIE
4470 83 00130 DEFB 834
4A71 00 00140 DEFB 00
4472 3C 00150 DEFB 3CH
4A73 01 00160 DEFB 1
4AT4 40 00170 DEFB 40H
4A75 BO 00180 DEFB 0BOH
4476 CO 00190 DEFB ocos
4A77 3F 00200 DEFB 3FH
4A78 Ol 00210 DEFB 1
4A79 40 00220 DEFB 40H
4AT7A BF 00230 DEFB OBFH
4A7B 00 00240 DEFB 0
4A7C 3C 00250 DEFB 3cH
4A7D 10 00260 DEFB 101
4ATE 01 00270 DEFB 1
4LATF BF 00280 DEFB 0BFR
4A80 3F 00290 DEFB 3FH
4481 3C 00300 DEF8 icH
4AB2 10 006310 DEFB 108
4AB3 01 00320 DEFB 1
257¢ 00330 DEFS 7000H-4A83H-1
4410 00340 SETUP EQU 4A10H
4AT0 00350 TOP EQU 4AT70H
4A75 00360 BOT E&QU 4AT5H
4A7A 00370 LEFT EQU 4ATAN
4ATF 00380 RIGHT EQU LATFH
7000 CDC90! 00390 RECl CALL oLcon ;CLEAR THE SCREEN
7003 21704A 00400 LD HL,TOP ;SET UP TOP
7006 CDl04A 00410 CALL SETUP ;DRAW IT
7009 21754A 00420 LD HL,BOT 3SET UP BOTTOM
700C CD104A 00430 CALL SETUP ;DRAW IT
700F 217A4a 00440 LD HL,LEFT ;SET UP LEFT
7012 CD104A 00450 CALL SETUP ;DRAW IT
7015 217F4A 00460 LD HL,RIGHT 3SET UP RIGHT
7018 CDiI04A 00470 CALL SETUP ;DRAW IT
7018 18FE 00480 LOOP JR LOOP ;LOOP TO SELF
7000 00490 END REC1
00000 TOTAL ERRORS
Loop 7018
RECl 7000
RIGHT 4AT7F
LEFT 4A7A
BOT 4A75
TOP 4A70
SETUP 4Al0

eter table. Then it generates a new video point (NPNT) based on
the values of CPNT and MCODE. The NPNT thus developed is
loaded to the parameter table before the program returns to the
calling, or controlling, routine.

Chart 11-3 documents MOV, Note the motion-code parameters
for stepping the video address from a current to a new point. Each
time MOV1 is called and MCODE is not a STOP code, NPNT takes
on a value representing a single step in the indicated direction. Using

209

Program 11-6. Assembled listing for MOV1.

00100 ;MOTION ROUTINE -- VER 1:FILENAME MOVI1

4B0O0 00110 ORG 4BO0H

00120 ;MOTION TABLE
4800 003C 00130 DEFW 3C00H ;CURRENT VIDEO POINT
4B02 003C 00140 DEFW 3C00H sNEW VIDEO POINT
4B04 00 00150 DEFB 0 ;MOTION CODE
000B 00160 DEFS 4B1OH-4B04H-1
4800 00170 CPNT EQU 4BOOH
4B02 00180 NPNT EQU 4B02H
4B04 00190 MCODE EQU 4BO4H
4B10 24004B 00200 MOVl LD HL,(CPNT) ;FETCH CURRENT VIDEO
4B13 3AD44B 00210 LD A, (MCODE) ;FETCH MOTION CODE
4816 E£603 00220 AND 3 ; ISOLATE HOR BITS
4B18 FEOL 00230 cp 1 ;IS IT RIGHT?
4BlA 2807 00240 JR Z,RT ;IF SO,MOVE RIGHT
4BIC FEO2 00250 CP 2 ;IS IT LEFT?
4B1E 2004 00260 JR NZ,UD +IF NOT, CHECK U/D
4B20 2B 00270 DEC HL ;ELSE MOVE LEFT
4B21 1801 00280 JR UD ;AND CHECK U/D
4823 23 00290 RT INC HL ;MOVE RIGHT
4824 114000 00300 UD LD DE,64 ;SET UP VERT MOVE
4827 3A044B 00310 LD A, (MCODE) ;FETCH MOTION CODE
4B2A E6CO 00320 AND OCOH ; ISOLATE U/D BITS
4B2C FEO4 00330 CP 4 ;IS IT up?
4B2E 2807 00340 JR Z,UP ; IF §0,SET UP
4B30 FEO8 00350 cp 8 ;I8 IT DOWN?
4B32 2006 00360 JR NZ,0UT ; IF NOT, GET OUT
4B34 19 00370 ADD HL,DE ;ELSE MOVE DOWN
4B35 1803 00380 JR OUT ;AND GET OUT
4B37 &F 00390 UP XOR A ;ZERO CY FLAG
4B38 EDS2 00400 SBC HL,DE ;MOVE UP
4B3A 22024B 00410 OUT LD (NPNT),HL ;SAVE NEW VIDEO POINT
483D €9 00420 RET iRETURN
4B10 00430 END MOV1
00000 TOTAL FRRORS
oUT 4B3A
up 4837
uD 4824
RT 4823
MOV1 4B10
MCODE 4B04
NPNT 4B02
CPNT 4BOC

this routine to create the effect of motion on the screen is thus a
matter of calling it a number of times in succession.

Like most other kinds of general-purpose routines, MOV1 can-
not be executed alone. It must be used in conjunction with a calling
program that sets the CPNT and MCODE parameters and uses
the NPNT parameter to draw the moving figure into its new place
on the screen. See one such program, BNCE], in Program 11-7.

BNCEL1 calls MOV1 to create the impression of a white rectangle
of light bouncing back and forth across the screen. It begins by
initializing the CPNT parameter at 3D00H—a point at the left side
of the screen, just a bit above center. The instruction in line 200

210

Chart 11-3. Overall Documentation for the MOV 1 Routine

Memory Location: 4BOOH-4B3E (63 bytes)

Entry Point: 4B10H

Parameter Table:
4BOOH CURRENT VIDEO POINT (CPNT), 2 bytes
4B02H NEW VIDEO POINT (NPNT), 2 bytes
4B04H MOTION CODE (MCODE), 1 byte

Motion Codes (MCODE Values):

O0H STOP 08H DOWN

01H RIGHT 09H DOWN/RIGHT
02H LEFT 0AH DOWN/LEFT
03H STOP OBH DOWN

04H up OCH STOP

05H UP/RIGHT ODH RIGHT

06H UP/LEFT OEH LEFT

07H up OFH STOP

sets NPNT one character space to the right of CPNT. Then line
210 sets the inijtial MCODE for right motion. Those first steps,
lines 160 through 220, initialize the parameter table for MOVL.

Label TRY marks the beginning of the actual animation sequence.
The first set of steps determines whether or not the figure’s NPNT
value will carry it beyond the left or right extremes of the screen.
Note that the decision is based on the value of NPNT that is fetched
from the MOV1 parameter table at line 230.

If NPNT is going to put the figure beyond the right side of the
screen, as determined by instructions in lines 270 through 280, the
routine calls SETL to load the MCODE byte for left motion—to a
value of 2. But if the instructions in lines 240 and 250 determine that
NPNT is about to carry the figure beyond the left extreme edge
of the screen, the scheme calls SETR to adjust the MCODE for
right motion. Of course, no adjustments in MCODE are made if the
figure is not reaching either extreme.

In any case, the routine finds its way to MOVIT at line 380, and
that set of instructions calls MOV1 to set up the next NPNT value.

The figure is first erased from its current position and drawn in
its new one by the instructions under label PLOT (lines 410
through 460). In those instructions the current video point (CPNT)
is loaded from the parameter table of MOV1 to the BC register pair
(line 410). A hexadecimal 20—ASCII code for a space—is then
loaded to that point to clear the image from the screen. Line 440
fetches the new video point (NPNT) from MOV1’s parameter table,
and the remaining lines in PLOT print the TRS-80 graphic BFH
(a solid rectangle) at that new point. The figure that appears to
be moving on the screen is thus determined by the data byte that

21

7000
4810
4BO0
4B02
4804
7000
7003
7006
7009
700A
700D
700F
7012
7015
7016
7018
701
701¢C
7010
701F
7022
7025
7027
7029
702¢
702E
7030
7033
7036
0008
7040
7044
7046
7047
7048
704D

704E
7050
7052
7053
7055
7056
7058
7000

cbegol
21003D
220048
23
22024B
3E01
320448
240248
7C
FE3D
3814
3E3F
BD
3808
CcD4070
22004B
180C
3JE02
320448
1805
3e0l
32044B
CcD104B
18DA

ED4B0O4B
3E20

02
ED4BOO4LB
3EBF

02

060C
QEFF
on
20FD
05
20F8
c9

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460

00470 ;

00480
00490
00500
00510
00520
00530
00540
00550

00000 TOTAL ERRORS

DECC
SETIC
MOVIT
PLOT
SETL
SETR
IRY
BNCE 1
MCODE
NPNT
CPNT
MOV1

212

7052
7050
7033
7040
7027
702E
7012
7000
4B04
4B02
4B00
4B10

Program 11-7. Assembled listing for BNCET.

;BOUNCE ROUTINE -- VER l: FILENAME BNCE!

MOV1
CPNT
NPNT
MCODE
BNCE1

TRY

SETL

SETR

MOVIT

PLOT

SETC
DECC

ORG 7000H
QU 4B10H
EQU 4BOOH
EQU 4BO2H
EQU 4BOGH
CALL 01GSH

LD HL,3DOOH
LD (CPNT),HL
INC HL

LD (NPNT),HL
LD 4,1l

LD (MCODE),A
LD HL,(NPNT)
LD AH

CP 3DH

JR C,SETR

LD A,3FH

CP L

JR C,SETL
CALL PLOT

LD (CPNT),HL
JR MOVIT

LD A,2

LD (MCODE),A
JR MOVIT

Lo a,l

LD (MCODE),A
CALL MOV1

JR IRY

DEFS 8

LD BC,(CPNT)
LD A, 20H

LD (BC),A

LD BC,{NPNT)
LD A,OBFH

LD (BC),A
TIME DELAY
LD B,OCH

LD C,0FFH
DEC C

JR NZ,DECC
DEC B

JR NZ,SETC
RET

END BNCE 1

;CLEAR THE SCREEN

;SET INITIAL CURRENT POINT
;LOAD TO MOVI PARAMETER TABLE
;SET INITIAL NEW POINT
;LOAD TO MOVI MOTION TABLE
JSET UP INITTAL MOTION CODE
;LOAD IT [0 PARAMETER IABLE
JGET NEW POINT FOR TESTING
;LOOK AT LEFT POSITION

JIS IT AT LEFT EXTREME?

JIF $0,SET UP RIGHT MOTION
;SET UP RIGHT EXTREME

;IS IT THERE?

J1F SO, SET UP LEFT MOTION
JELSE PLOT THE NEW POINT
JAND SET AS CURRENT

{AND DO THE NEXT STEP

;SET UP LEFT MOTION

;AND LOAD TO PARAMETER TABLE
; AND MOVE

;SET UP RIGHT MOTION

JAND LOAD IT TO PARAMETER TABIE
;D0 THE MOVE

;AND CHECK IT OUT

JIEAVE SOME MEMORY

JFETCH GCURRENT POINT

;SET UP ERASE

{ERASE CURRENT POINT

;FETCH NEW POINT

JSET UP CHARACTER

;PLOT NEW POINT

;SET MSB OF DELAY

;SET LSB OF DELAY

; COUNTDOWN LSB

; IF NOT DONE, COUNT MORE
; COUNTDOWN MSB

3 IF NOT DONE, COUNT MORE

is loaded to the A register in line 450. Change that byte, and the
moving character will change its appearance.

The PLOT sequence is called from line 300. Looking over that
portion of the routine, you can see that PLOT is called only if the
next position on the screen is a valid one—not beyond either ex-
treme edge.

Since machine-language routines execute so rapidly, it is usually
necessary to insert a time delay between successive PLOTtings.
A time-delay routine thus follows the PLOT routine. Using the
values loaded to registers B and C, the rectangle of light requires
roughly two seconds to cross the screen in either direction.

BNCE] sets up an endless looping action. The animation thus
cycles endlessly, and the only way out of it is by operating the
RESET push button.

Thus far in this section we have generated two programs: MOV1
and BNCE1. MOV1 is a general-purpose, motion-generating routine,
and BNCEL uses MOV1 to achieve one particular sort of animation.
A number of other routines can be written—all calling MOVI1—to
create complex sets of animated figures,

To run the suggested program, generate the MOV1 and BNCE1
object codes separately and under EDTASM. Then use the following
procedure to get it going:

1. Load the MOV1 object code under SYSTEM.

2. Answer the *k? at the end of the loading by operating the
RESET push button.

3. Load BNCE] under the SYSTEM command.

4. Start the program by answering the *? with a slash or a /28672.

23

APPENDIX A

Number System Base Conversions

214

Just about any computer (certainly the TRS-80) is essentially
a binary machine; the Z-80 microprocessor does all its control, arith-
metic, and logic operations in the base-2, or binary, number system.
And it so happens that the Z-80 works with 8-bit binary numbers—a
full byte of 8 bits.

People do not think and work with binary numbers very well,
however. Such numbers, being made up of 1s and Os, are very
cumbersome. One alternative to purely binary representations of
numbers is hexadecimal numbers. The hexadecimal (base-16) num-
ber system looks at binary numbers in groups of four; every group
of four binary figures (sometimes called a nibble) can be repre-
sented by a single hexadecimal character. So, instead of having
to work with strings of eight 1s and Os in binary, it is possible to
work with just two hexadecimal characters.

While, indeed, many machine-language programmers can learn
to work with hexadecimal numbers with great proficiency, the
general population still prefers the usual decimal number system.
TRS-80 engineers were aware of that fact, and TRS-80 BASIC
is built around the decimal number system exclusively.

As long as one works with TRS-80 BASIC in its most elementary
fashion—doing no special addressing or machine-language work—
there is no need to be aware of hexadecimal or binary numbers.
But hexadecimal numbers become helpful when POKEing and
PEEKing in memory, and they become quite necessary when doing
extensive machine-language programming.

Then, too, binary numbering becomes important when attempting
to write machine-language program for controlling custom circuitry
connected to the TRS-80’s output connector.

Thus, programmers working deeper and deeper into the TRS-80
system will find themselves having to make conversions between
decimal and hexadecimal numbers and, eventually, between binary
and hexadecimal numbers. The purpose of this appendix is to make
such conversion tasks as simple as possible.

There are many ways to approach the conversions between these
three different number systems; but, in this writer’s opinion, the
following are the most straightforward.

HEXADECIMAL-TO-DECIMAL CONVERSIONS

In the TRS-80/Z-80 system, data is carried as a l-byte (two-
hexadecimal-character) code, and addresses are carried as a 2-byte
(four-hexadecimal-character) code. Table A-1 can be very helpful
for translating hexadecimal numbers into their decimal counter-
parts. This sort of situation often arises when one is writing pro-
grams in both BASIC and machine language.

215

Table A-1. Hexadecimal to Decimal Conversion

4 3 ’ 2 1
Hex Decimal Hex Decimal Hex Decima!l Hex Decimal
(4] 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536] 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
14 36864 9 2304 9 144 14 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 o} 192 (o} 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

The table can be used for converting up to four hexadecimal
places to their decimal counterpart. Note that there are four major
columns, labeled 1 through 4. These column numbers represent
the relative positions of the hexadecimal characters as they are
usually written, with the 1sb on the left and the msb on the right.

To see how the table works, suppose that you want to convert
the hexadecimal number 1A3F into decimal. The first character on
the left takes a decimal equivalent shown in column 4--4096. The
second character from the left takes the value from column 3—
2560. The last two figures get their decimal equivalents from columns
2 and 1—48 and 15, respectively. Then, to get the true decimal value,
add those decimal equivalents: 4096-+2560-+48+15. That comes out
to 6719. In other words, 1A3F (hexadecimal) is equal to 6719
(decimal).

If you are converting a two-place hexadecimal number, just use
columns 2 and 1. Hexadecimal C3, for instance, is equal to 192+3,
or decimal 195.

Table A-1 is adequate for hexadecimal-to-decimal conversions for
all the usual sort of work on the TRS-80/Z-80 system.

DECIMAL-TO-HEXADECIMAL CONVERSIONS

When working back and forth between BASIC and machine
language, it is often necessary to convert decimal data and ad-
dresses into hexadecimal notation. Table A-1 comes to the rescue
here. The procedure is a rather straightforward one, but it involves
several steps.

216

Suppose, for example, you want to convert decimal 65 into
its hexadecimal counterpart. First, find the decimal number (in a
decimal column) that is equal to, or less than, the desired decimal
number—65 is the decimal number, and its closest, and less, value
is 64. The 64 is equivalent to a hexadecimal 4 in colunn 2. Thus
the most significant character in the hexadecimal representation
isa4.

Next, subtract that 64 from the number you are working with:
65—64=1. Now look up the hexadecimal value of the 1 in the next-
lower column—the 1 column in this case. The hexadecimal version
of that number is 1.

Putting together those two hexadecimal characters, you get a 41.
Indeed, decimal 65 translates into hexadecimal 41.

By way of a somewhat more involved example, suppose you have
to convert decimal 19314 into hexadecimal notation.

Looking through the columns of DEC numbers, you find that
16384 is the next-lower value; it translates into hexadecimal 4 in
column 4. So you are going to end up with a four-character hexa-
decimal number, with the digit on the left being a 4.

To get the next place value, subtract 16384 from 19314: 19314—
16384=2930. The next-lower decimal value in this case is 2816 from
column 3; and that turns up a B as the next hexadecimal character.
So far, the number is 4B.

Now do this: 2930—2816==114. The next-lower decimal value from
column 2 is 112, and its hexadecimal counterpart is 7. And to this
point, the hexadecimal number is 4B7.

Finally, do this: 114—112=2. From column 1, decimal 2 is the
same as hexadecimal 2; so the final hexadecimal character is 2.

Putting this all together, it turns out that decimal 19314 is the
same as hexadecimal 4B72. Fig. A-1 summarizes the operation.

DECIMAL ADDRESS TO 2-BYTE DECIMAL FORMAT

When POKEing addresses as 2-byte numbers into memory, it
is necessary to convert the address to be loaded into a 2-byte for-
mat. In decimal, this isn’t easy, but it is all a part of setting up
address locations in decimal-oriented BASIC.

By way of an example, suppose you are to load a 2-byte version
of decimal address 1234 into memory addresses 16787 and 16788.
That number to be stored, 1234, has to be broken up into two
parts: one for each of the places it is to be stored.

Before a decimal number can be divided into a 2-byte version, it
must be converted into a hexadecimal form. Using the decimal to
hexadecimal conversion described in the previous section, it turns
out that 1234 decimal is equal to 04D2 in hexadecimal.

217

HEXADECIMAL
DECIMAL EQUIVALENT

NUMBER 4 BT 2

19314
—16384 — COLUMN 4
2930
—2816 — COLUMN 3 Fig. A-1. Converting 19314 decimal
to 4B72 hexadecimal.
—-112 — COLUMN 2
2w GOLUMN 1

19314 (DECIMAL) = 4B72 (HEXADECMAL)

Next, divide that hexadecimal version into two bytes: the most
significant byte (msb) is 04, and the least significant byte is DZ.
Divided this way, you get the combinations 04 D2.

Finally, convert those two sets of hexadecimal numbers into their

‘decimal equivalents, treating them as two separate hexadecimal

numbers, Thus 04 hexadecimal is 4 decimal, and D2 hexadecimal
is 210.

The 2-byte version of decimal 1234 is thus 4 and 210, with 4
being the msb and 210 being the Isb.

That takes care of the conversion of an ordinary decimal number
into a 2-byte version—also in decimal. This is the main point of
the discussion at hand. But the example calls for POKEing these
numbers into locations 16787 and 16788—both in decimal.

Now, almost without exception, you will find that the Isb of the
2-byte number must go into the lower-numbered address; so the
BASIC operation for satisfying the requirements for the example
looks like this:

POKE 16787,210:POKE 16788,4

No, it isn’t a simple operation, but it’s the price that must be paid
for working with a binary/hexadecimal-oriented computer system
in a decimal, BASIC-oriented language.

2-BYTE DECIMAL TO CONVENTIONAL DECIMAL

Suppose you are disassembling a machine-language program from
BASIC. Under that condition, a 2-byte address will appear as a set of
two decimal numbers; and if you want to get that pair of numbers
into a conventional decimal format, you have to play with the
numbers a bit.

Consider a case where 223 turns up as the Isb in decimal, and
104 is the msb. First, convert both sets of numbers into their hexa-

218

decimal counterparts: 223 decimal = DF hexadecimal, and 104 deci-
mal = 68 hexadecimal.

That means DF is the Isb and 68 is the msb. Putting them together
in the conventional order (msb first), the hexadecimal equivalent of
the number under consideration is 68DF.

All that remains to be done is to convert that into a full decimal
number: 68DF=24567+2048+208+15=26849 decimal. That’s it—the
conventional decimal version of the 2-byte decimal combination
104 223 is 26849. For one reason or another, the disassembled pro-
gram is saving address 26849.

BINARY-TO-DECIMAL CONVERSION

In practice, most binary-to-decimal conversions are carried out
with 1-byte (or 8-bit) binary numbers, although there are occasions
when it is necessary to do the conversion from 2-byte (16-bit)
numbers.

Fig. A-2A shows the breakdown of an 8-bit binary number. The
positions are labeled 0 through 7, with zero indicating the least
significant bit (Isb) position. Each of those eight bit locations will
contain either a 1 or a 0.

To appreciate the relevance of this whole thing, suppose you
want to POKE a decimal number into some address location, and
select a number such that it looks like this in binary form: 01101011.

MSB LSB
(A) Standard 8-bit binary format,

showing bit positions. 7 6 51413 2 1 0

0 1 1 011 0 1 1 | BINARY

I—. IxP=1x 1= 1
Ix2l=1x 2= 2
0x?=0x 4= 0
IXB=1x 8= 8
0x2=0x 16= 0
IxP=1x 322= 32
IxB=1x 64= 64
0x2=0x128= +0

108 DECIMAL

01101011 BINARY = 108 DECIMAL

(B) Converting binary word 01101011 to decimal.

Fig. A-2. Power-of-2 place values of an 8-bit binary word.

219

So you want bit positions 0, 1, 3, 5, and 6 to be a 1, and the rest 0.
But you have to POKE a decimal version from BASIC. Here’s how
to go about determining that decimal version.

First, multiply the 1 or 0 in each bit location times 2", where n
is the bit’s position value in each case. Then simply add the results.
See the example in Fig. A-2B. That particular number in binary is
equal to 108 decimal.

The same idea applies to converting 16-bit binary to a decimal
equivalent. The place values run from 0 to 15 in that case, and
Table A-2 can help you determine those larger powers of 2.

Table A-2. Powers of 2

n 2"

[1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1 024
n 2 048
12 4 096
13 8 192
14 16 384
15 32 768

BINARY-TO-HEXADECIMAL CONVERSION

Converting a binary number into a hexadecimal format is perhaps
the simplest of all the conversion operations. All you have to do is
group the binary number into sets of 4 bits each, beginning with
the Isb, and then find the hexadecimal value for each group. Table
A-3 helps with the latter operation.

Suppose the binary number is 10011101. Grouping this number
into sets of 4 bits (or nibbles), it looks like this: 1001 1101. The
hexadecimal equivalents for each group can be found in Table A-3:
9 D. The hexadecimal version of that 8-bit binary number is thus 9D.

The same procedure works equally well for 16-bit numbers, the
only difference being that you end up with four hexadecimal char-
acters instead of just two of them.

Incidentally, there is an algorithm for converting directly from
binary to hexadecimal (without using the table), but its com-
plexity far exceeds that of doing the job with Table A-3.

220

Table A-3. Binary to Hexadecimal Conversion

Binary Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mn

MMOOAO®T> CONOTGRWUN~O

HEXADECIMAL-TO-BINARY CONVERSION

Converting a hexadecimal number to binary is a simple matter
of applying Table A-3 to convert each hexadecimal character into
the appropriate groups of 4 binary bits.

Example: Convert address 403D into binary. According to Table
A-3, that hexadecimal number can be represented as

0100 0000 0011 1101

Nothing more, nothing less. That’s all there is to it.

DECIMAL-TO-BINARY CONVERSION

There is a nice algorithm (several of them, in fact) for mathe-
matically converting any decimal number into its binary format.
But it is simpler in the long run, and probably more accurate as
well, to use a two-step procedure.

The general idea is to convert the decimal number into its hexa-
decimal counterpart as described earlier in this appendix. Then
convert the hexadecimal characters into their binary versions as
described in the previous section. Besides, it is often handy to have
the hexadecimal version available for later use.

Example: Convert 1234 decimal into binary. First, as described
earlier, calculate the hexadecimal version of decimal 1234—that
comes out to be 04D2. And that hexadecimal number, expressed in
binary (from Table A-3) is 0000 0100 1101 0010. Thus 1234 in deci-
mal is equal to 10011010010 in binary. You may retain the leading
zeros if you wish.

221

APPENDIX B

Z-80 Instruction Set: Object and Source Codes

222

ADD WITH CARRY INSTRUCTIONS

8E
DD
FD

8F
88
89
8a
88
8c
8D

CE

ED
ED
ED
ED

ADD INSTRUCTIONS

86
DD
Fp

87
80
81
82
83
84
85

cé

8E byte
8E byte

byte

4A
5A
64
7A

86 byte
86 byte

byte

09
19
29
39
09
19
29
39

LOGIC-AND INSTRUCTIONS

ADC
ADC
ADC

ADC
ADC
ADC
ADC
ADC
ADC

ADC

ADC

ADC
ADC

ADD
ADD
ADD

ADD
ADD
ADD
ADD
ADD
ADD
ADD

A, (HL)
A, (IX+indx)
A, (1¥+indx)

R
HEIPmoOW>

A,data

HL,BC
HL, DE
HL, HL
HL,SP

A, (HL)
A, (IX+indx)
A, (I¥+indx)

Ab
DD
FD

A7
A0
Al
A2
A3
Ab
A5

A6

byte

A6 byte

E6 byte

BIT-~TEST INSTRUCTIONS

AND
AND
AND

AND
AND
AND
AND
AND

AND

(HL)
(IX+indx)
(IY+indx)

CEMOO o>

data

46
CB
CB

47

41
42
43
44
45

4E
CcB
CcB

4F
48
49
4A
4B
4C
4D

56
CcB
CcB

57
50
51
52
53

55
58
CB
CcB

5F
58
59
54
58
5¢C
5D

byte 46
byte 46

byte 4E
byte 4E

byte 56
byte 56

byte 58
byte S5E

BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT

BIT
BIT
BIT
BIT
BIT

0,(HL)

0,(IX+indx)
0,(I¥+indx)

1,(HL)

1,(IX+indx)
1,(IY+indx)

DO W

L,
L,
L,
L,
1,
1,
L,

2, (HL)

2,(IX+indx)
2,(I¥+indx)

N m TS O >

HL)

WWNRNNRNNNON

,(IX+indx)

3,(I¥+indx)

223

CB 66

DD CB byte 66
FD CB byte 66

CB 67
CB 60
CB 61
CB 62
CB 63

CB 65

CB 6E

DD CB byte 6E
FD CB byte 6E

CB 6F
CB 68
CB 69
CB 64
CB 6B
CB 6C
CB 6D

CB 76

DD CB byte 76
FD CB byte 76

cB 77
CB 70
cB 71
CB 72
CB 73
CB 74
cB 75

CB 7€

DD CB byte 7E
FD CB byte 7E

CB 7F
cB 78
CB 79
CB 7A
CB 78
CB 7¢C
CB 7D

CALL INSTRUCTIONS

DC byte
FC byte
D4 byte
C4 byte
F4 byte
EC byte
E4 byte
CC byte

CD byte

COMPLEMENT CARRY FLAG

224

byte
byte
byte
byte
byte
byte
byte
byte

byte

BIT
BIT
BIT

BIT

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT

81T
BIT
BIT
BIT
BIT

BIT

BIT

BIT

BIT
BIT
BIT

BIT

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

4, (HL)
4, (IX+indx)
4,(IX+indx)

4,
4,
4,
b4,
4,
4,
4,

CEENgoOO >

5, (HL)
5,(IX+indx)
5,(I¥+indx)

Mo O m

5,
5,
5,
5,
5,
5,
5,

6,(HL)
6,(IX+indx)
6,(I¥+indx)

»
3
s
B

6
6
6
6
6
6
6

Mmoo Ow>

7,(HL)
7,(IX+indx)
7,(IY+indx)

mEEBOOE >

¢ ,addr
M, addr
NG ,addr
NZ, addr
P,addr
PE,addr
PO,addr
Z,addr

addr

COMPARE ACCUMULATOR INSTRUCTLONS

BE cP (HL)

DD BE byte CP (IX+indx)
FD BE byte CP (IY+indx)
BF CP A

B8 cP B

BY cP C

BA cP D

BB CPE

BC cP H

BD CP L

COMPARE AND INCREMENT/DECREMENT

ED A9 [¢i:3)]
ED B9 CPDR
ED Al CPI
ED Bl CPIR

COMPLEMENT ACCUMULATOR

DECIMAL ADJUST THE ACCUMULATOR

DECREMENT INSTRUCTIONS

35 DEC (HL)

PD 35 byte DEC (IX+indx)
FD 35 byte DEC (IY+indx)
3D DEC A

05 DEC B

oD DEC C

15 DEC D

1D DEC E

25 DEC H

2D DEC L

0B DEC BC

1B DEC DE

2B DEC HL

DD 2B DEC IX

FD 2B DEC IY

3B DEC SP

DISABLIE INTERRUPT INCREMENT INSTRUCTIONS

F3 DL 34 INC (HL)

DD 34 byte INC (IX+indx)

FD 34 byte INC (I¥+indx)

ic INC A

04 INC B
DECREMENT AND JUMP RELATIVE ac INC €
__ 14 INC D

Ic INC E
10 byte DINZ disp 24 We o

2c INC L

03 INC BC
ENABLE INTERRUPT 13 INC DE
__ 23 INC HL

DD 23 INC IX
FB £1 FD 23 INC LY

33 INC SP

JUMP INSTRUCTIONS

C3 byte byte JP addr
E3 EX (SP),HL £ e (HL)
DD €3 EX (SP),IX bo &9 P (1X)
FD £3 EX (SP),IY FD €9 Je (1)

B

gg X 3535 DA byte byte IP C,addr
D9 EXX FA byte byte JP M,addr

D2 byte byte JP NC,addr

C2 byte byte JP NZ,addr

F2 byte byte JP P,addr

EA byte byte JP PE,addr
HALT INSTRUCTION E2 byte byte JP P0,addr

I CA byte byte P Z,addr

38 byte JR C,disp

30 byte JR NC,disp
7 HALT 20 byte JR NZ,disp

28 byte JR Z,disp

18 byte IR disp
SET INTERRUPT MODES
ED 46 0 .
ED 56 1 it dat i
ED 5E M 2

02 LD (BC),A

12 LD (DE),A
INPUT FROM PORT INSTRUCTIONS 77 LD (HL),A
___ 70 LD (HL),B

71 L (HL),¢
ED 78 N A,(C) 72 LD (HL),D
ED 40 IN B,(C) 73 LD (HL),E
ED 48 m ¢,(c) 74 LD (HL),H
£D 50 N D,(C) 75 LD (HL),L
ED 58 ™ E,(c) 36 byte LD (HL),data
ED 60 IN H,(C) DD 77 byte LD (IX+indx),A
ED 68 IN L,(C) DD 70 byte LD (IX+indx),B
DB byte IN A,(port) DD 71 byte LD (IX+indx),C

DD 72 byte LD (IX+indx),b
ED AA IND DD 73 byte LD (IX+indx),E
ED BA INDR DD 74 byte LD (i{X+indx),H
ED A2 NI DD 75 byte LD (IX+indx),L
ED B2 INIR DD 36 byte byte LD (IX+indx),data

225

FD 77 byte LD (IY+indx),4 57 LD D,A
FD 70 byte LD (IY+indx),B 50 LD D,B
FD 71 byte LD (I¥+indx),C 51 LD b,C
FD 72 byte LD (IY+indx),D 52 Lb D,D
FD 73 byte LD (iY+indx),E 53 LD D,E
FD 74 byte LD (IY+indx),H 54 LD D,H
FD 75 byte LD (IY¥+indx),L 55 LD b,L
FD 36 byte byte LD (IY+indx),data 16 byte LD D,data
32 byte byte LD (addr),A ED 5B byte byte LD DE,(addr)
ED 43 byte byte LD (addr),BC 11 byte byte LD DE,data data
ED 53 byte byte LD (addr),DE
22 byte byte LD (addr),HL 35E LD E,(HL)
Db 22 byte byte LD (addr),IX DD 5E byte LD E,(IX+indx)
ED 22 byte byte LD (addr),IY¥ FD 5E byte LD E,(I¥+indx)
ED 73 byte byte LD (addr),SP
SF LD E,A
0A LD 4, (BC) 58 LD E,B
1A LD A, (DE) 59 LD E,c
7E LD A, (HL) 54 LD E,D
DD 7E byte LD A, (IX+indx) 5B LD E,E
FD 7E byte LD A, (I¥+indx) 5C LD E,H
3A byte byte LD A, (addr) 5D Lb E,L
1E byte LD E,data
7F LD A,A
78 LD A,B 66 LD H,(HL)
79 LD A,C DD 66 byte LD H,(IX+indx)
74 LD A,D FD 66 byte LD H, (I¥+indx)
78 LD A,E
7c LD A,H 67 LD H,A
7D LD A,L 60 LD H,B
ED 57 LD A,I 61 LD H,C
ED 5F LD A,R 63 LD H,D
3E byte LD A,data 64 LD H,E
65 LD H,L
46 Lb B,(HL) 26 byte LD H,data
DD 46 byte LD B,(IX+indx)
FD 46 byte LD B,(IV+indx) 24 byte byte LD HL,(addr)
47 LD B,A 21 byte byte LD HL,data data
40 LD B,B
41 LD B,C 6E LD L, (HL)
42 LD B,D DD 6E byte LD L,(IX+indx)
43 LD B,E FD 6E byte LD L,(I¥+indx)
44 LD B,H
45 LD B,L 6F LD L,A
06 byte LD B,dat 68 LD L,B
69 LD L,C
ED 4B byte byte LD BC,(addr) 64 LD L,D
0l byte byte LD BC,data data 6B LD L,E
6C LD L,H
4E b ¢, (H) 6D Lo L,L
DD 4E byte LD C,{(IX+indx) 2E byte LD L,data
FD 4E byte LD C,(I¥+indx) 0 47 1A
4F LD C,A ED 4F LD R,A
48 b C.B DD 24 byte byte LD IX, (addr)
49 LD CiC FD 2A byte byte LD IY,(addr)
4A b C,D DD 21 byte byte LD IX,data data
4B LD C,E FD 21 byte byte LD IY,data data
4¢ LD C,H ED 7B byte byte LD SP,(addr)
4D Ld C,L F9 LD sP,HL
OE byte LD ¢,data Db F9 LD SP,IX
FD F9 LD SP,IY
56 LD D, (HL) 31 byte byte LD SP,data data
pD 56 byte 1D D,(IX+indx)
FD 56 byte 1D D,(I¥+indx)

|
i 226
|

LOAD WITH INCREMENT/DECREMENT ED 8B QTDR

--------------------------------------- D B3 OTIR
ED AB ouTD

ED AB LDD £0 A3 ouTL

ED B8 LDDR

ED A0 LD

ED B8O LDIR

PUSH AND POP INSTRUCTIONS

NO OPERATION

... Fl POP AF
cl POP BC
00 NoP pl POP DE
El POP HL
DD El POP IX
FD E1 POP 1Y
- - s i
NEGATE Acc. (s cowiewewr) F5 PUSH AF
cs PUSH BC
i D5 PUSH DE
ED 44 NEG £S PUSH HL
DD 55 PUSH IX
FD 55 PUSH 1Y
LOGIC-OR INSTRUCIIONS
BS OR (HL)
DD B6 byte OR (IX+indx) RESET BIT INSTRUCTIONS
FD 86 byte OR (IY+indX) e
87 OR A CB 86 RES (HL)
BO OR B DD CB byte 86 RES (IX+indx)
81 O0R C FD CB byte 86 RES (IY+indx)
B2 OR O
83 OR E cB 87 RES 0,A
B4 OR H CcB 80 RES 0,B
BS OR L cB 81 RES 0,C
F6 byte OR data CB 82 RES 0,D
CB 83 RES 0,E
CB 84 RES 0,H
EXCLUSIVE~OR INSTRUCTIONS CB 85 RES 0,L
CB 8E RES 1,(HL)
AR XOR (HL) DD CB byte 8E RES 1,(IX+indx)
DD AE byte XOR (IX+indx) FD CB byte 8E RES 1,(IY+indx)
FD AE byte XOR (IY+indx)
CB 8F RES 1,A
AF XOR A CB 88 RES 1,B
A8 XOR B CB 89 RES 1,0
A9 XOR C CB 8A RES 1,D
AA XOR D CB 8B RES I,E
AB XOR E CB 8C RES 1,H
AC XOR H CB 8D RES 1,L
AD XOR L
EE byte XOR dataa CB 96 RES 2,(HL)
DD CB byte 96 RES 2,(IX+indx)
FD CB byte 96 RES 2,(IY+indx)
OUTPUT TO PORT INSTRUCTIONS CB 97 RES 2,A
-- B 90 RES 2,B
CB 91 RES 2,C
ED 79 ouT (C),A CB 92 RES 2,D
ED 41 OuT (C),B CB 93 RES 2,E
ED 49 ouT (c),C CB 94 RES 2,H
ED 51 QUT (C),D CB 95 RES 2,L
ED 59 OUT (C),E
ED 61 ouT (C),H CB 9g RES 3,(HL)
ED 69 ouT (C),L DD CB byte 9E RES 3,(IX+indx)
D3 byte OUT (port),A FD CB byte 9E RES 3,(IY+indx)

227

CB 9F RES 3,A ED 4D RETL
CB 98 RES 3,B ED 45 RETN
CB 99 RES 3,C
CB 9A RES 3,D
CB 9B RES 3,E
CB 9C RES 3,H
CB 9D RES 3,L
CB A6 RES 4,(HL) , .
DD CB byte A6 RES 4)(Iivindy) ~ foLni THROUGH GARRY WSTROCTION
FD CB byte A6 RES 4,(IY+indx)

17 RLA
o e o 16 ()
CB Al RES A:C Db CB byte 16 RL (IX*}ndx)
CB 42 RES 4.D FD CB byte 16 RL (IY+indx)
CB A3 RES 4,E cs 17 RL A
CB A4 RES 4,H
CB A5 RES 4,L €8 10 RL B

’ CB 11 RL €
CB AE RES 5,(HL) gg ig ii g
DD CB byte AF RES 5,(IX+indx) CB 14 AL H
FD CB byte AF RES 5,(I¥+indx) CB 15 &L L
CB AF RES 5,A 7 RRA
o e o 15)
OB an RES S:D DD CB byte IE RR (IX+indx)
CB 4B RES 5E FD CB byte IE RR (IY+indx)
o e o i o
: CB 18 RR B

B 86 RES 6,(HL) g: ii o
DD CB byte B6 RES 6,(IX+indx) CB 1B /R E
FD CB byte B6 RES 6,(1¥+indx) oB lc "R H
B B7 RES 6,A cB 1o RR L
CB BO RES 6,B
CB Bl RES 6,C
CB B2 RES 6,D
CB B3 RES 6,E
CB B4 RES 6,H
CB BS RES 6,L ROTATE CIRCULAR INSTRUCTIONS
CB BE RES 7,(HL)
DD CB byte BE RES 7,(IX+indx) 07 RLCA
FD CB byte BE RES 7,(IY¥+indx) CB 06 RLC (HL)

DD CB byte 06 RLC (IX+indx)
CB BF RES 7,A FD C8 byte 06 RLC (IY+indx)
CB 88 RES 7,B
CB B9 RES 7,C cB 07 RLC A
CB BA RES 7,D CB 00 RLC B
CB BB RES 7,E cB 01 RLC C
CB BC RES 7,H cB 02 RLC D
CB 8D RES 7,L cB 03 RLC E

CB 04 RLC H

CB 05 RLC L
RETURN INSTRUCTIONS OF RRCA
--------------------------------------- CB OE RRC (HL)

DD CB byte OE RRC (IX+indx)
9 RET FD CB byte OE RRC (IY+indx)
D8 RET €
F8 RET M CB OF RRC A
DO RET NC cB 08 RRC B
co RET NZ B8 09 RRC C
FO RET P CB 0A RRC D
E8 RET PE CB 0B RRC E
EO RET PO CB 0C RRC H
c8 RET Z CB 0D RRC L

ROTATE ACC. AND (HL) INSTRUCTIONS

ED 6F
ED 67

RESTART INSTRUCTIONS

RLD
RRD

RST 00H
RST 08H
RST 108
RST 18H
RST 20H
RST 284
RST 30H
RST 38H4

SUBTRACT WITH CARRY INSTRUCTIONS

DD 9E byte
FD 9E byte

9F
98
99
94
98
9c
9D
DE byte

ED 42
ED 52
ED 62
ED 72

SET CARRY FLAG

SET BIT INSTRUCTIONS

CB C6
DD CB byte €6
FD CB byte C6

CB C7
CB ¢c0

SBC A, (HL)
SBC A, (IX+indx)
SBC A,(IY+indx)

SBC A,A
SBC A,B
SBC A,C
SBC A,D
SBC A,E
SBC A,H
SBC A,L
SBC A,data
SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

SCF

SET 0,{HL)
SET 0,(IX+indx)
SET 0,(IY+indx)

SET 0,A
SET 0,B

cB

DD
FD

CB
CB

CcB
CB
CB
CB

CB

FD

CB
CB
CB
c8
CcB
cs8
CB

CB byte CE
CB byte CE

CB byte D6
CB byte D6

CB byte DE
CB byte DE

CB byte E6
CB byte E6

£7
EQ
£l
£2
E3
E4
E5

EE
CB byte EE
CB byte EE

EF
2]
E9
£a
EB
£C
ED
F6

CB byte F6
CB byte F6

SET
SET
SET
SET
SET

SET

SET

SET
SET
SET
SET

SET

SET
SET
SET

SET
SET
SET
SET
SET
SET
SET

SET

SET

SET

SET
SET
SET
SET
SET

SET
SET
SET

1,(HL)
1,(IX+indx)
1,{I¥+indx)

tE TG e

B

1
1
1
1
1
1
1

2,(HL)
2, (X +indx)
2,(1Y+indx)

)
>
»
3

2
2
2
2
2
2
2

T 0w

3
3
’

3,(HL)
3,(IX+indx)
3,(1y+indx)

3,
3,
3,
3,
3,
3,
3,

CEPYO >

4, (HL)

4, (IX+indx)
4,(1¥+indx)

iR SR R
MER S O >

)
)
3

5,(HL)
5,(IX+indx)
3,(I¥+indx)

5,
5,
5,
3,
3,
3,
5,

PO >

6, (HL)
6,(IX+indx)
6,(1¥+indx)

229

CB F7 SET 6,A CB 2F SRA A
CB FO SET 5.8 cB 28 SRA B
CB Fi SET 6,C cB 29 SRA C
cB F2 SET 6.0 CB 24 SRA D
cB F3 SET 6.5 CB 2B SRA E
CB F4 SET 6.0 CB 2C SRA H
CB F5 SET 6.L CB 2D SRA L
CB FE SET 7, (HL) SHIFT LOGICAL INSTRUGTIONS
DD CB byte FE SET 7,(IX+iadx)
FD CB byte FE SET 7,(IY+indx)
CB 3E SRL (HL)
CB FF SET 7,A DD CB byte 3E SRL (IX+indx)
CB F8 SET 7,B FD CB byte 3E SRL (IY¥+indx)
CB F9 SET 7,C
CB FA SET 7,D CB 3F SRL A
R CB 38 SRL B
cB 39 SRL C
CB 3A SRL D
CB 38 SRL E
: CB 3C SRL H
SHIPT ARITHMETIC S TRCTIS . cB 3D SRL 1,
CB 26 . SLA (HL) SUBTRACT INSIRUCTIONS
DD CB byte 26 SLA (IK#indx) —mee—mmmmmmmeeeeemmmm s oo
FD CB byte 26 SLA (IY+indx)
96 suB (HL)
cB 27 SLA A DD 96 byte SUB (IX+indx)
cB 28 SLA B FD 96 byte SUB (IY+indx)
CB 29 SLA C
CB 24 SLA D 97 SUB A
CB 2B SLA E 90 SUB B
cB 2C SLA H 91 SUB C
CB 2D S5LA L 92 SUB D
93 SUB E
CB 28 SRA (HL) 94 SUB H
DD CB byte 2E SRA (IX+indx) 95 SUB L
FD CB byte ZE SRA (IY+indx) D6 byte SUB data

230

APPENDIX C

TRS-80 ASCIl Character Set:
Decimal and Hexadecimal Codes

231

Decimal Hexadecimal Character Decimal Hexadecimal Character
32 20 space 80 50 P
33 21 i 81 51 Q
34 22 " 82 52 R
35 23 # 83 53 S
36 24 $ 84 54 T
37 25 % 85 55 U
38 26 & 86 56 v
39 27 ! 87 57 w
40 28 (88 58 X
41 29) 89 59 Y
42 2A * 90 5A Z
43 28 + 91 58 1
44 2c . 92 5C !
45 2D - 93 5D <«
46 2E . 94 5E ->
47 2F / 95 5F .
48 30 0 96 60 @
49 3 1 97 61
50 32 2 98 62 b
5 33 3 99 63 c
52 34 4 100 64 d
53 35 5 101 65 e
54 36 6 102 66 f
55 37 7 103 67 g
56 38 8 104 68 h
57 39 9 105 69 i
58 3A : 106 6A i
59 3B H 107 6B k
60 3C < 108 6C i
61 3D = 109 6D m
62 3E > 110 6E n
63 3F ? 111 6F o
64 40 @ 112 70 p
65 A1 A 113 71 q
66 A2 B 114 72 r
67 43 C 115 73 s
68 44 D 116 74 t
69 45 E 117 75 u
70 46 F 118 76 v
71 47 G 119 77 w
72 48 H 120 78 x
73 49 1 121 79 y
74 4A J 122 7A z
75 4B K 123 78 1
76 4C L 124 7C ¥
77 4D M 125 7D <«
78 4E N 126 7E -
79 4F o 127 7€ .

232

APPENDIX D

TRS-80 Graphics Character Set:
Decimal and Hexadecimal Codes

233

0AQH 0AlH 0AZH 0A3H 0A4H
160D 161D 162D 163D 164D

0ASH

165D

166D

0A7H

167D

0BOH 0BIH 0B2H 0B3H 0B4H 0B5H 0B6H 0B7H
176D 1770 178D 1780 180D 181D 182D 183D
0B8H 0B9H 0BAH 0BBH 0BCH 0BDH 0BEH 0BFH
184D 185D 186D 187D 188D 189D 150D 191D

234

SH 8IH 820 83H 84H 8H 8H 8IH
128D 1290 1300 131D 1320 133D 134D 1350

88H 89H 8AH 8BH 8CH $DH 8EH 8FH
136D 137D 1380 139D 1400 1410 142D 143D

90H TR TR 95H il 9H
144D 1450 146D 147D 148D 149D 1500 151D

98H 99H 9AH 9BH 9CH 9DH 9EH 9FH
152D 153D 154D 155D 156D 157D 158D 159D

235

Index

A

Addressing, video, 23-26
horizontal addressing with PRINT
TAB, 30-32
PRINT @ access to video memory,
25-28
relative
character-space, with TAB control
codes, 32-34
with primitive prints, 28-30
SET/RESET memory, 36
working directly with cursor
counter, 34-36
Alphanumeric character codes, video
data, 16-18
ASCII character set, 17, 232

B
BASIC-loaded, USR-linked programs,
manipulating, 103-120
Binary
to decimal conversion, 219-220
to hexadecimal conversion, 220-221

236

C

Codes, video control. See Control
codes, video
Character codes, alphanumeric, 16-18
Control codes
and functions, summary, 38
video, 36-43
Compression codes, 69-70
Cursor counter, working directly with,
34-36

p

Data, video, 15-23
alphanumeric character codes, 16-18
TRS-80 graphic codes, 19-23
Decimal
address to 2-byte decimal format
conversion, 217-218
to binary conversion, 221
to hexadecimal conversion, 216-217
DEFB and DEFW, defining memory
contents with, 189-191

DEFL, redefining a label with, 186-
187

DEFM, building necessary tables with,
191-196

DEFS, leaving memory space with,
187-189

Disassembling a BASIC program,
71-74

E

Editor/assembler, TRS-80,
intreducing, 163-180
EDTASM. See Editor/assembler,
TRS-80
EQU
operations with math expressions,
184-185
pseudo-ops, simple, 181-184

F

FILL routine, building general-
purpose, 197-204

FILL 2, applying and refining,
204-208

Free memory, 66

G

Graphic codes, TRS-80, 19-23
Graphics character set, TRS-80,
233-235

Hexadecimal
programming with T-BUG, 121-140
to binary conversion, 221
to decimal conversion, 215-216
Horizontal addressing with PRINT
TAB, 30-32

INKEY$ statement, standard, 49-57

INPUT statement, standard, 44-49

Instruction set, Z-80, 222-230

1/0 buffer, user’s memory
environment, 68-70

K

Keyboard environment, 44-63
sensing key depression with
PEEK(14463), 57-60

Keyboard environment—cont
standard
INKEY$ statement, 49-57
INPUT statement, 44-49
working with the keyboard
matrix, 60-63

L

Linking BASIC and machine language
with USR, 81-102

M

Manipulating BASIC-loaded, USR-
linked programs, 103-120
Matrix, keyboard,-working with, 60-63
Memory environment, user’s, 64-80
disassembling a BASIC program,
71-74
i/o buffer, 68-70
organization of User’s memory
space, 65-68
protecting memory space, 74-75
special memory operations, 75-80
MOVE routine, building general-
purpose, 208-213

N
Nibble, 215
Number system base conversions,
214-221
binary

to decimal, 219-220
to hexadecimal, 220-221
decimal
address to 2-byte decimal format,
217-218
to binary, 221
to hexadecimal, 216-217
hexadecimal
to binary, 221
to decimal, 215-216
2-byte decimal to conventional
decimal, 218-219

P

PEEK (14463), sensing key depression
with, 57-60

POKE technique, 24

PRINT @ access to video memory,
25-28

PRINT statement summary, 28

PRINT TAB, horizontal addressing
with, 30-32

237

Protecting user’s memory space, 74-75
Pseudo-ops, real assembly power with,
181-196
building message tables with
DEFM, 191-196
defining memory contents with
DEFB and DEFW, 189-191
EQU operations with math
expressions, 184-185
leaving memory space with DEFS,
187-189
redefining a label with DEFL,
186-187
simple EQU pseudo-ops, 181-184

R

RAM space, user’s available, 64

Real assembly power with pseudo-ops,
181-196

Relative addressing, video, 28-36

H

Sensing key depression with
PEEK(14463), 57-60
SET/RESET video memory
addressing, 36
Split-screen formatting, 42
Standard
INKEYS$ statement, 49-57
INPUT statement, 44-49

238

T

T-BUG
exploring TRS-80 with, 141-162
hexadecimal programming with,
121-140
TRS-80
ASCII character set, 17, 231
graphics character set, 233-235
2-byte decimal to conventional
decimal conversion, 218-219

v

User’s memory environment, 64-80
USR
-linked, BASIC-loaded programs,
manipulating. See Manipulating
BASIC-loaded, USR-linked
programs
linking BASIC and machine language
with , 81-102

\'4

Video environment, 15-43
video addressing, 23-26
video control codes, 36-43
video data, 15-23

Y4
Z-80 instruction set, 222-230

TO THE READER

Sams Computer books cover Fundamentals — Programming — Interfacing —
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educators, business owners, personal com-
puterists and home hobbyists.

Our Tradition is to meet your needs

and in so doing we invite you to tell us what
your needs and interests are by completing
the following:

1. 1 need books on the following topics:

2. | have the following Sams titles:

3. My occupation is:
Scientist, Engineer
Persona! computerist Business owner
Computer store owner
Home hobbyist

D P Professional

Technician, Serviceman
Educator
Student Other

Name (print)

Address

City State Zip

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092

Indianapolis, Indiana 46206 21809

INTERMEDIATE
PROGRAMMING
FOR THE TRS-80

(MODEL 1)

« Teaches you how to design more elegant
programs than are suggested in existent
manuals.

* Is written in the context of the TRS-80 Model |
personal computer with 16K RAM and Level ||
BASIC.

* Shows you how to do more with BASIC.

* Leads you dgradually from standard BASIC to
machine- and assembly-language programming.

* Stimulates you to get more fun out of creating
computer programs.

+ Enables you to learn more about the internal
operations of your computer.

* Shows you how to use your current equipment
more effectively. '

» Qives operating details usually neglected in
current literature.

* Helps you to devise new and exciting programs of
your own.,

Howard W. Sams & Co,, Inc.

4300 W 62nd Street, Indianapolis, Indiana 46268 USA

$9.95/21809 ISBN: 0-672-21809-7

